YOLOV5-LITE实时目标检测(onnxruntime部署+opencv获取摄像头+NCNN部署)python版本和C++版本

这篇具有很好参考价值的文章主要介绍了YOLOV5-LITE实时目标检测(onnxruntime部署+opencv获取摄像头+NCNN部署)python版本和C++版本。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.训练好的pt模型转换为onnx格式

使用yolov5-lite自带的export.py导出onnx格式,图像大小设置320,batch 1

之后可以使用 onnxsim对模型进一步简化

onnxsim参考链接:onnxsim-让导出的onnx模型更精简_alex1801的博客-CSDN博客

python export.py --weights weights/v5lite-e.pt --img 320 --batch 1
python -m onnxsim weights/v5lite-e.onnx weights/yolov5-lite-sim.onnx

2.使用onnxruntime调用onnx模型实时推理(python版本

这个版本的推理FPS能有11+FPS

这两处换成自己的模型和训练的类别即可:

    parser.add_argument('--modelpath', type=str, default="/media/xcy/dcd05f09-46df-4879-bfeb-3bab03a6cc3a/YOLOv5-Lite/weights/v5lite-e.onnx",
                        help="onnx filepath")
    parser.add_argument('--classfile', type=str, default='coco.names',
                        help="classname filepath")

参考github:GitHub - hpc203/yolov5-lite-onnxruntime: 使用ONNXRuntime部署yolov5-lite目标检测,包含C++和Python两个版本的程序

import cv2
import numpy as np
import argparse
import onnxruntime as ort
import time


class yolov5_lite():
    def __init__(self, model_pb_path, label_path, confThreshold=0.5, nmsThreshold=0.5, objThreshold=0.5):
        so = ort.SessionOptions()
        so.log_severity_level = 3
        self.net = ort.InferenceSession(model_pb_path, so)
        self.classes = list(map(lambda x: x.strip(), open(label_path, 'r').readlines()))
        self.num_classes = len(self.classes)
        anchors = [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]]
        self.nl = len(anchors)
        self.na = len(anchors[0]) // 2
        self.no = self.num_classes + 5
        self.grid = [np.zeros(1)] * self.nl
        self.stride = np.array([8., 16., 32.])
        self.anchor_grid = np.asarray(anchors, dtype=np.float32).reshape(self.nl, -1, 2)

        self.confThreshold = confThreshold
        self.nmsThreshold = nmsThreshold
        self.objThreshold = objThreshold
        self.input_shape = (self.net.get_inputs()[0].shape[2], self.net.get_inputs()[0].shape[3])

    def resize_image(self, srcimg, keep_ratio=True):
        top, left, newh, neww = 0, 0, self.input_shape[0], self.input_shape[1]
        if keep_ratio and srcimg.shape[0] != srcimg.shape[1]:
            hw_scale = srcimg.shape[0] / srcimg.shape[1]
            if hw_scale > 1:
                newh, neww = self.input_shape[0], int(self.input_shape[1] / hw_scale)
                img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA)
                left = int((self.input_shape[1] - neww) * 0.5)
                img = cv2.copyMakeBorder(img, 0, 0, left, self.input_shape[1] - neww - left, cv2.BORDER_CONSTANT,
                                         value=0)  # add border
            else:
                newh, neww = int(self.input_shape[0] * hw_scale), self.input_shape[1]
                img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA)
                top = int((self.input_shape[0] - newh) * 0.5)
                img = cv2.copyMakeBorder(img, top, self.input_shape[0] - newh - top, 0, 0, cv2.BORDER_CONSTANT, value=0)
        else:
            img = cv2.resize(srcimg, self.input_shape, interpolation=cv2.INTER_AREA)
        return img, newh, neww, top, left

    def _make_grid(self, nx=20, ny=20):
        xv, yv = np.meshgrid(np.arange(ny), np.arange(nx))
        return np.stack((xv, yv), 2).reshape((-1, 2)).astype(np.float32)

    def postprocess(self, frame, outs, pad_hw):
        newh, neww, padh, padw = pad_hw
        frameHeight = frame.shape[0]
        frameWidth = frame.shape[1]
        ratioh, ratiow = frameHeight / newh, frameWidth / neww
        # Scan through all the bounding boxes output from the network and keep only the
        # ones with high confidence scores. Assign the box's class label as the class with the highest score.
        classIds = []
        confidences = []
        boxes = []
        for detection in outs:
            scores = detection[5:]
            classId = np.argmax(scores)
            confidence = scores[classId]
            if confidence > self.confThreshold and detection[4] > self.objThreshold:
                center_x = int((detection[0] - padw) * ratiow)
                center_y = int((detection[1] - padh) * ratioh)
                width = int(detection[2] * ratiow)
                height = int(detection[3] * ratioh)
                left = int(center_x - width / 2)
                top = int(center_y - height / 2)
                classIds.append(classId)
                confidences.append(float(confidence))
                boxes.append([left, top, width, height])

        # Perform non maximum suppression to eliminate redundant overlapping boxes with
        # lower confidences.
        indices = cv2.dnn.NMSBoxes(boxes, confidences, self.confThreshold, self.nmsThreshold)
        for i in indices:
            i = i[0] if isinstance(i, (tuple, list)) else i
            box = boxes[i]
            left = box[0]
            top = box[1]
            width = box[2]
            height = box[3]
            frame = self.drawPred(frame, classIds[i], confidences[i], left, top, left + width, top + height)
        return frame

    def drawPred(self, frame, classId, conf, left, top, right, bottom):
        # Draw a bounding box.
        cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), thickness=4)

        label = '%.2f' % conf
        label = '%s:%s' % (self.classes[classId], label)

        # Display the label at the top of the bounding box
        labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
        top = max(top, labelSize[1])
        # cv.rectangle(frame, (left, top - round(1.5 * labelSize[1])), (left + round(1.5 * labelSize[0]), top + baseLine), (255,255,255), cv.FILLED)
        cv2.putText(frame, label, (left, top - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), thickness=2)
        return frame

    def detect(self, srcimg):
        img, newh, neww, top, left = self.resize_image(srcimg)
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        img = img.astype(np.float32) / 255.0
        blob = np.expand_dims(np.transpose(img, (2, 0, 1)), axis=0)

        outs = self.net.run(None, {self.net.get_inputs()[0].name: blob})[0].squeeze(axis=0)
        row_ind = 0
        for i in range(self.nl):
            h, w = int(self.input_shape[0] / self.stride[i]), int(self.input_shape[1] / self.stride[i])
            length = int(self.na * h * w)
            if self.grid[i].shape[2:4] != (h, w):
                self.grid[i] = self._make_grid(w, h)

            outs[row_ind:row_ind + length, 0:2] = (outs[row_ind:row_ind + length, 0:2] * 2. - 0.5 + np.tile(
                self.grid[i], (self.na, 1))) * int(self.stride[i])
            outs[row_ind:row_ind + length, 2:4] = (outs[row_ind:row_ind + length, 2:4] * 2) ** 2 * np.repeat(
                self.anchor_grid[i], h * w, axis=0)
            row_ind += length
        srcimg = self.postprocess(srcimg, outs, (newh, neww, top, left))
        #         cv2.imwrite('result.jpg', srcimg)
        return srcimg


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--imgpath', type=str, default="",
                        help="image path")
    parser.add_argument('--modelpath', type=str, default="/media/xcy/dcd05f09-46df-4879-bfeb-3bab03a6cc3a/YOLOv5-Lite/weights/v5lite-e.onnx",
                        help="onnx filepath")
    parser.add_argument('--classfile', type=str, default='coco.names',
                        help="classname filepath")
    parser.add_argument('--confThreshold', default=0.5, type=float, help='class confidence')
    parser.add_argument('--nmsThreshold', default=0.6, type=float, help='nms iou thresh')
    args = parser.parse_args()

    # srcimg = cv2.imread(args.imgpath)
    # print(args.imgpath,srcimg)
    net = yolov5_lite(args.modelpath, args.classfile, confThreshold=args.confThreshold, nmsThreshold=args.nmsThreshold)
    print(net)

    counter = 0
    start_time = time.time()
    # 1 加载视频文件
    capture = cv2.VideoCapture(0)
    # 2 读取视频
    ret, frame = capture.read()
    fps = capture.get(cv2.CAP_PROP_FPS)  # 视频平均帧率
    while ret:

        counter += 1  # 计算帧数
        if (time.time() - start_time) != 0:  # 实时显示帧数
            cv2.putText(frame, "FPS {0}".format(float('%.1f' % (counter / (time.time() - start_time)))), (30, 50),
                        cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255),
                        2)
            # 3 ret 是否读取到了帧,读取到了则为True
            cv2.imshow("video", frame)
            ret, frame = capture.read()
            print("FPS: ", counter / (time.time() - start_time))
            counter = 0
            start_time = time.time()

        srcimg = net.detect(frame)

        # winName = 'Deep learning object detection in onnxruntime'
        # cv2.namedWindow(winName, cv2.WINDOW_NORMAL)
        # cv2.imshow(winName, srcimg)

        # 4 若键盘按下q则退出播放
        if cv2.waitKey(20) & 0xff == ord('q'):
            break

    # 5 释放资源
    capture.release()
    # 6 关闭所有窗口
    cv2.destroyAllWindows()

3.使用NCNN+opencv来读取模型实时推理(C++版本

此版本能够在笔记本上达到33+FPS,正在整理代码。后续发

代码整理好了,如下:需要VS2019配置ncnn之后即可运行。

LINUX配置NCNN可以参考我的另一篇博客:Ubuntu20.04配置NCNN推理框架(转换yolov5 onnx格式到ncnn格式-CSDN博客

WINDOWS配置比较简单,大家搜一搜都能搜到。文章来源地址https://www.toymoban.com/news/detail-764423.html

#include "layer.h"
#include "net.h"

#if defined(USE_NCNN_SIMPLEOCV)
#include "simpleocv.h"
#else
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#endif
#include <float.h>
#include <stdio.h>
#include <vector>
#include<iostream>
#include <chrono>

//#define YOLOV5_V60 1 //YOLOv5 v6.0
#define YOLOV5_V62 1 //YOLOv5 v6.2 export  onnx model method https://github.com/shaoshengsong/yolov5_62_export_ncnn

#if YOLOV5_V60 || YOLOV5_V62
#define MAX_STRIDE 64
#else
#define MAX_STRIDE 32
class YoloV5Focus : public ncnn::Layer
{
public:
    YoloV5Focus()
    {
        one_blob_only = true;
    }

    virtual int forward(const ncnn::Mat& bottom_blob, ncnn::Mat& top_blob, const ncnn::Option& opt) const
    {
        int w = bottom_blob.w;
        int h = bottom_blob.h;
        int channels = bottom_blob.c;

        int outw = w / 2;
        int outh = h / 2;
        int outc = channels * 4;

        top_blob.create(outw, outh, outc, 4u, 1, opt.blob_allocator);
        if (top_blob.empty())
            return -100;

#pragma omp parallel for num_threads(opt.num_threads)
        for (int p = 0; p < outc; p++)
        {
            const float* ptr = bottom_blob.channel(p % channels).row((p / channels) % 2) + ((p / channels) / 2);
            float* outptr = top_blob.channel(p);

            for (int i = 0; i < outh; i++)
            {
                for (int j = 0; j < outw; j++)
                {
                    *outptr = *ptr;

                    outptr += 1;
                    ptr += 2;
                }

                ptr += w;
            }
        }

        return 0;
    }
};

DEFINE_LAYER_CREATOR(YoloV5Focus)
#endif //YOLOV5_V60    YOLOV5_V62

struct Object
{
    cv::Rect_<float> rect;
    int label;
    float prob;
};

static inline float intersection_area(const Object& a, const Object& b)
{
    cv::Rect_<float> inter = a.rect & b.rect;
    return inter.area();
}

static void qsort_descent_inplace(std::vector<Object>& faceobjects, int left, int right)
{
    int i = left;//下标0
    int j = right; //下标最后一位
    float p = faceobjects[(left + right) / 2].prob; //取一个中轴

    while (i <= j)
    {
        while (faceobjects[i].prob > p) //如果前半段 的 大于 》 p
            i++; //下标前移

        while (faceobjects[j].prob < p) //如果后半段的小于 p
            j--; // j往中间

        if (i <= j)
        {
            // swap
            std::swap(faceobjects[i], faceobjects[j]); //前半段的和后半段的交换

            i++; // i前移
            j--; // j往中间
        }
    }

#pragma omp parallel sections
    {
#pragma omp section
        {
            if (left < j) qsort_descent_inplace(faceobjects, left, j);
        }
#pragma omp section
        {
            if (i < right) qsort_descent_inplace(faceobjects, i, right);
        }
    }
}

static void qsort_descent_inplace(std::vector<Object>& faceobjects)
{
    if (faceobjects.empty())
        return;

    qsort_descent_inplace(faceobjects, 0, faceobjects.size() - 1);
}

static void nms_sorted_bboxes(const std::vector<Object>& faceobjects, std::vector<int>& picked, float nms_threshold, bool agnostic = false)
{
    picked.clear();

    const int n = faceobjects.size();

    std::vector<float> areas(n);
    for (int i = 0; i < n; i++)
    {
        areas[i] = faceobjects[i].rect.area();
    }

    for (int i = 0; i < n; i++)
    {
        const Object& a = faceobjects[i];

        int keep = 1;
        for (int j = 0; j < (int)picked.size(); j++)
        {
            const Object& b = faceobjects[picked[j]];

            if (!agnostic && a.label != b.label)
                continue;

            // intersection over union
            float inter_area = intersection_area(a, b);
            float union_area = areas[i] + areas[picked[j]] - inter_area;
            // float IoU = inter_area / union_area
            if (inter_area / union_area > nms_threshold)
                keep = 0;
        }

        if (keep)
            picked.push_back(i);
    }
}

static inline float sigmoid(float x)
{
    return static_cast<float>(1.f / (1.f + exp(-x)));
}

static void generate_proposals(const ncnn::Mat& anchors, int stride, const ncnn::Mat& in_pad, const ncnn::Mat& feat_blob, float prob_threshold, std::vector<Object>& objects)
{
    const int num_grid = feat_blob.h;

    int num_grid_x;
    int num_grid_y;
    if (in_pad.w > in_pad.h)
    {
        num_grid_x = in_pad.w / stride;
        num_grid_y = num_grid / num_grid_x;
    }
    else
    {
        num_grid_y = in_pad.h / stride;
        num_grid_x = num_grid / num_grid_y;
    }

    const int num_class = feat_blob.w - 5;  //特征图的w是85  是类别 80  +  xywh + 目标置信度

    const int num_anchors = anchors.w / 2;

    for (int q = 0; q < num_anchors; q++)
    {
        const float anchor_w = anchors[q * 2];
        const float anchor_h = anchors[q * 2 + 1];

        const ncnn::Mat feat = feat_blob.channel(q);

        for (int i = 0; i < num_grid_y; i++)
        {
            for (int j = 0; j < num_grid_x; j++)
            {
                const float* featptr = feat.row(i * num_grid_x + j);
                float box_confidence = sigmoid(featptr[4]);
                if (box_confidence >= prob_threshold)
                {
                    // find class index with max class score
                    int class_index = 0;
                    float class_score = -FLT_MAX;
                    for (int k = 0; k < num_class; k++)
                    {
                        float score = featptr[5 + k];
                        if (score > class_score)
                        {
                            class_index = k;
                            class_score = score;
                        }
                    }
                    float confidence = box_confidence * sigmoid(class_score);
                    if (confidence >= prob_threshold)
                    {
                        // yolov5/models/yolo.py Detect forward
                        // y = x[i].sigmoid()
                        // y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i]  # xy
                        // y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh

                        float dx = sigmoid(featptr[0]);
                        float dy = sigmoid(featptr[1]);
                        float dw = sigmoid(featptr[2]);
                        float dh = sigmoid(featptr[3]);

                        float pb_cx = (dx * 2.f - 0.5f + j) * stride;
                        float pb_cy = (dy * 2.f - 0.5f + i) * stride;

                        float pb_w = pow(dw * 2.f, 2) * anchor_w;
                        float pb_h = pow(dh * 2.f, 2) * anchor_h;

                        float x0 = pb_cx - pb_w * 0.5f;
                        float y0 = pb_cy - pb_h * 0.5f;
                        float x1 = pb_cx + pb_w * 0.5f;
                        float y1 = pb_cy + pb_h * 0.5f;

                        Object obj;
                        obj.rect.x = x0;
                        obj.rect.y = y0;
                        obj.rect.width = x1 - x0;
                        obj.rect.height = y1 - y0;
                        obj.label = class_index;
                        obj.prob = confidence;

                        objects.push_back(obj);
                    }
                }
            }
        }
    }
}

static int detect_yolov5(const cv::Mat& bgr, std::vector<Object>& objects, ncnn::Extractor ex)
{

    const int target_size = 320;
    const float prob_threshold = 0.25f;
    const float nms_threshold = 0.45f;

    int img_w = bgr.cols;
    int img_h = bgr.rows;

    // letterbox pad to multiple of MAX_STRIDE
    int w = img_w;
    int h = img_h;
    float scale = 1.f;
    if (w > h)
    {
        scale = (float)target_size / w;
        w = target_size;
        h = h * scale;
    }
    else
    {
        scale = (float)target_size / h;
        h = target_size;
        w = w * scale;
    }

    ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR2RGB, img_w, img_h, w, h);

    // pad to target_size rectangle
    // yolov5/utils/datasets.py letterbox
    int wpad = (w + MAX_STRIDE - 1) / MAX_STRIDE * MAX_STRIDE - w;
    int hpad = (h + MAX_STRIDE - 1) / MAX_STRIDE * MAX_STRIDE - h;
    ncnn::Mat in_pad;
    ncnn::copy_make_border(in, in_pad, hpad / 2, hpad - hpad / 2, wpad / 2, wpad - wpad / 2, ncnn::BORDER_CONSTANT, 114.f);

    const float norm_vals[3] = { 1 / 255.f, 1 / 255.f, 1 / 255.f };
    in_pad.substract_mean_normalize(0, norm_vals);

    /*ncnn::Extractor ex = yolov5.create_extractor();*/

    ex.input("images", in_pad);

    std::vector<Object> proposals;

    // anchor setting from yolov5/models/yolov5s.yaml

    // stride 8
    {
        ncnn::Mat out;
        ex.extract("output", out);

        ncnn::Mat anchors(6);
        anchors[0] = 10.f;
        anchors[1] = 13.f;
        anchors[2] = 16.f;
        anchors[3] = 30.f;
        anchors[4] = 33.f;
        anchors[5] = 23.f;

        std::vector<Object> objects8;
        generate_proposals(anchors, 8, in_pad, out, prob_threshold, objects8);

        proposals.insert(proposals.end(), objects8.begin(), objects8.end());
    }

    // stride 16
    {
        ncnn::Mat out;

#if YOLOV5_V62
        ex.extract("1111", out);
#elif YOLOV5_V60
        ex.extract("376", out);
#else
        ex.extract("781", out);
#endif

        ncnn::Mat anchors(6);
        anchors[0] = 30.f;
        anchors[1] = 61.f;
        anchors[2] = 62.f;
        anchors[3] = 45.f;
        anchors[4] = 59.f;
        anchors[5] = 119.f;

        std::vector<Object> objects16;
        generate_proposals(anchors, 16, in_pad, out, prob_threshold, objects16);

        proposals.insert(proposals.end(), objects16.begin(), objects16.end());
    }

    // stride 32
    {
        ncnn::Mat out;
#if YOLOV5_V62
        ex.extract("2222", out);
#elif YOLOV5_V60
        ex.extract("401", out);
#else
        ex.extract("801", out);
#endif
        ncnn::Mat anchors(6);
        anchors[0] = 116.f;
        anchors[1] = 90.f;
        anchors[2] = 156.f;
        anchors[3] = 198.f;
        anchors[4] = 373.f;
        anchors[5] = 326.f;

        std::vector<Object> objects32;
        generate_proposals(anchors, 32, in_pad, out, prob_threshold, objects32);

        proposals.insert(proposals.end(), objects32.begin(), objects32.end());
    }

    // sort all proposals by score from highest to lowest
    qsort_descent_inplace(proposals);

    // apply nms with nms_threshold
    std::vector<int> picked;
    nms_sorted_bboxes(proposals, picked, nms_threshold);

    int count = picked.size();

    objects.resize(count);
    for (int i = 0; i < count; i++)
    {
        objects[i] = proposals[picked[i]];

        // adjust offset to original unpadded
        float x0 = (objects[i].rect.x - (wpad / 2)) / scale;
        float y0 = (objects[i].rect.y - (hpad / 2)) / scale;
        float x1 = (objects[i].rect.x + objects[i].rect.width - (wpad / 2)) / scale;
        float y1 = (objects[i].rect.y + objects[i].rect.height - (hpad / 2)) / scale;

        // clip
        x0 = std::max(std::min(x0, (float)(img_w - 1)), 0.f);
        y0 = std::max(std::min(y0, (float)(img_h - 1)), 0.f);
        x1 = std::max(std::min(x1, (float)(img_w - 1)), 0.f);
        y1 = std::max(std::min(y1, (float)(img_h - 1)), 0.f);

        objects[i].rect.x = x0;
        objects[i].rect.y = y0;
        objects[i].rect.width = x1 - x0;
        objects[i].rect.height = y1 - y0;
    }

    return 0;
}

static void draw_objects(const cv::Mat& bgr, const std::vector<Object>& objects, double fps)
{
    static const char* class_names[] = {
        "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
        "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
        "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
        "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard",
        "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple",
        "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch",
        "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone",
        "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear",
        "hair drier", "toothbrush"
    };

    /*cv::Mat image = bgr.clone();*/
    cv::Mat image = bgr;
    for (size_t i = 0; i < objects.size(); i++)
    {
        const Object& obj = objects[i];

        fprintf(stderr, "%d = %.5f at %.2f %.2f %.2f x %.2f\n", obj.label, obj.prob,
            obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height);

        cv::rectangle(image, obj.rect, cv::Scalar(255, 0, 0));

        char text[256];
        sprintf_s(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100);

        int baseLine = 0;
        cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);

        int x = obj.rect.x;
        int y = obj.rect.y - label_size.height - baseLine;
        if (y < 0)
            y = 0;
        if (x + label_size.width > image.cols)
            x = image.cols - label_size.width;

        cv::rectangle(image, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)),
            cv::Scalar(255, 255, 255), -1);

        cv::putText(image, text, cv::Point(x, y + label_size.height),
            cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0));

        cv::putText(image, "FPS: " + std::to_string(fps), cv::Point(30, 50),
            cv::FONT_HERSHEY_SIMPLEX, 1.0, cv::Scalar(0, 0, 255), 2);
    }

    //cv::imshow("image", image);
    //cv::waitKey(1);
}


int main() {

    ncnn::Net yolov5;

    yolov5.opt.use_vulkan_compute = true;
    /*yolov5.opt.use_bf16_storage = true;*/
    yolov5.load_param("../model/v5lite-e.param");
    yolov5.load_model("../model/v5lite-e.bin");
    ncnn::Extractor ex = yolov5.create_extractor();
    /*ex.set_num_threads(4);*/

    cv::VideoCapture capture(0);  // 打开默认摄像头
    int frameCount = 0;
    double totalTime = 0.f;
    double fps = 0.f;
    cv::Mat frame;
    std::vector<Object> objects;
    while (true) {

        auto start = std::chrono::high_resolution_clock::now();
        capture >> frame;  // 读取摄像头的下一帧图像

        // yolo 检测 
        detect_yolov5(frame, objects,ex);
        draw_objects(frame, objects,fps);
        // 显示结果
        cv::imshow("YOLO检测e", frame);

        // 更新帧统计信息
        frameCount++;
        auto end = std::chrono::high_resolution_clock::now();
        double timeSec = std::chrono::duration<double>(end - start).count();
        totalTime += timeSec;

        // 计算并显示帧率
        fps = frameCount / totalTime;
        std::cout << "帧率: " << fps << std::endl;
        int key = cv::waitKey(1);
        if (key == 27) {  // 按下 ESC 键退出循环
            break;
        }
    }

    capture.release();  // 释放摄像头
    cv::destroyAllWindows();  // 关闭显示窗口

    return 0;
}

到了这里,关于YOLOV5-LITE实时目标检测(onnxruntime部署+opencv获取摄像头+NCNN部署)python版本和C++版本的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 使用YOLOv5实现实时目标检测结果保存

           本文将分享保存实时目标检测结果的方法,包括将目标信息逐帧保存到.txt文件中、逐帧输出检测结果图片、以及如何保存所有检测图片(包括视野中无目标的帧)。 目录 0.准备 1.目标信息保存 2.检测图片保存 3.保存所有帧        本文以单摄像头实时目标检测进行演

    2024年02月03日
    浏览(49)
  • 使用YOLOv5实现多摄像头实时目标检测

    这篇博客将在单摄像头目标检测的基础上,实现单网络多线程的实时目标检测。 在detect.py同级目录下新建streams.txt文件,每个视频流源单独成行: 本地摄像头填0 USB摄像头填1,2,3… IP摄像头要根据摄像头类型,按下面格式填写(我将在之后的博客中讲解实现) 0是电脑自带摄像

    2024年02月05日
    浏览(59)
  • 使用YOLOv5实现单摄像头实时目标检测

    我将在上一节的基础上,一步一步展示如何实现单摄像头实时目标检测,其中包括我在配置过程中遇到的报错和解决方法。 将\\\'--source\\\'的默认值改为0 这里的\\\'0\\\'是指系统默认的第一个摄像头,通常是电脑自带的摄像头,所以一定要记得把摄像头打开再运行代码(有些电脑会有摄

    2024年02月03日
    浏览(67)
  • Realsense D435i Yolov5目标检测实时获得目标三维位置信息

    - Colorimage: - Colorimage and depthimage: 1.一个可以运行YOLOv5的python环境 2.一个realsense相机和pyrealsense2库 在下面两个环境中测试成功 win10 python 3.8 Pytorch 1.10.2+gpu CUDA 11.3 NVIDIA GeForce MX150 ubuntu16.04 python 3.6 Pytorch 1.7.1+cpu 修改模型配置文件,以yolov5s为例。 如果使用自己训练的模型,需要进

    2024年02月04日
    浏览(62)
  • c++读取yolov5模型进行目标检测(读取摄像头实时监测)

    文章介绍 本文是篇基于yolov5模型的一个工程,主要是利用c++将yolov5模型进行调用并测试,从而实现目标检测任务 任务过程中主要重点有两个,第一 版本问题,第二配置问题 一,所需软件及版本       训练部分 pytorch==1.13.0  opencv==3.4.1   其他的直接pip即可       c++部署 

    2024年02月07日
    浏览(45)
  • 基于Yolov5+Deepsort+SlowFast算法实现视频目标识别、追踪与行为实时检测

    前段时间打算做一个目标行为检测的项目,翻阅了大量资料,也借鉴了不少项目,最终感觉Yolov5+Deepsort+Slowfast实现实时动作检测这个项目不错,因此进行了实现。 总的来说,我们需要能够实现实时检测视频中的人物,并且能够识别目标的动作,所以我们拆解需求后,整理核心

    2024年01月20日
    浏览(68)
  • 深度学习||YOLO(You Only Look Once)深度学习的实时目标检测算法(YOLOv1~YOLOv5)

    目录 YOLOv1: YOLOv2: YOLOv3: YOLOv4: YOLOv5: 总结: YOLO(You Only Look Once)是一系列基于深度学习的实时目标检测算法。 自从2015年首次被提出以来,YOLO系列不断发展,推出了多个版本,包括YOLOv1, YOLOv2, YOLOv3, YOLOv4, 和YOLOv5等。下面是对YOLO系列的详解: 提出时间 : 2015年。 主要贡献 :

    2024年02月20日
    浏览(58)
  • 如何使用Django 结合WebSocket 进行实时目标检测呢?以yolov5 为例,实现:FPS 25+ (0: 系统简介与架构)

    访问:http://127.0.0.1:8000/ObjectDetection/ObjectDetection1/ 先看下效果:两个摄像头实时展示 之后更新了效果,打算加上检测结果和 FPS ,结果加上FPS 实测了一下,好家伙一秒30-40 帧都行 在我的3060 上,这是python 写的 前后端实时检测你敢信,还两个摄像头机位。

    2023年04月08日
    浏览(48)
  • YOLOv5识别目标的实时坐标打印

    这个功能看似鸡肋,但对于无人机目标识别与追踪有重要意义,通过目标在摄像头视野的坐标位置,可以推算出无人机相对与目标的位置,从而对无人机进行位置矫正。因此,添加代码打印坐标并不是主要目的,关键在于寻找坐标信息在工程中的位置。 在utils文件夹下的plo

    2024年02月12日
    浏览(44)
  • YOLOV5实时检测屏幕

    目录 YOLOV5实时检测屏幕 思考部分 先把原本的detect.py的代码贴在这里 分析代码并删减不用的部分 把屏幕的截图通过OpenCV进行显示 写一个屏幕截图的文件 用OpenCV绘制窗口并显示 最终代码 注:此为笔记 目的:保留模型加载和推理部分,完成实时屏幕检测 实现思路: 1. 写一个

    2024年02月07日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包