yolov5-Lite通过修改Detect.py代码实现灵活的检测图像、视频和打开摄像头检测

这篇具有很好参考价值的文章主要介绍了yolov5-Lite通过修改Detect.py代码实现灵活的检测图像、视频和打开摄像头检测。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

yolov5-Lite介绍

yolov5-Lite通过修改Detect.py代码实现灵活的检测图像、视频和打开摄像头检测,图像识别,YOLO,音视频
这里项目链接查看,或者这里下载。
经过本人测试,与yolov5-7.0相比,训练好的权重文件大小大约是yolov5-7.0的0.3倍(yolov5-Lite——3.4M,yolov5-7.0——13M),置信度均在0.9之上。特别的,我之所以使用此Lite改进算法,是因为需要部署在智能小车上实现图像识别的功能,而小车上只有CPU,yolov5-7.0使用CPU计算的速度太慢了,一秒只能处理3张图像,距离功能的要求还差些,而Lite算法的权重参数减少了很多,速度也相应快了一些,部署在小车上,使用CPU计算的速度快了0.8倍,不算很多,但也算是勉强能使用了,每秒5/6张图片。

需求

算法自带检测图片、视频的detect.py脚本,但是拿来自己灵活的使用还是有许多问题,一般图像检测都是对实时性有要求,detect.py脚本是检测本地的图片视频。我修改一部分代码,将detect.py脚本写成一个api,直接调用函数,传入一个img数组对象,即可输出detections字典,包含各检测对象的类别、位置信息、置信度。

修改代码

原函数

def detect(save_img=False):
    source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    save_img = not opt.nosave and not source.endswith('.txt')  # save inference images
    webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
        ('rtsp://', 'rtmp://', 'http://', 'https://'))

    # Directories
    save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

    # Initialize
    set_logging()
    device = select_device(opt.device)
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    stride = int(model.stride.max())  # model stride
    imgsz = check_img_size(imgsz, s=stride)  # check img_size
    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride)
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]

    # Run inference
    if device.type != 'cpu':
        model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))  # run once
    t0 = time.time()
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=opt.augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
        t2 = time_synchronized()

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
            else:
                p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # img.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # img.txt
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or view_img:  # Add bbox to image
                        label = f'{names[int(cls)]} {conf:.2f}'
                        plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)

            # Print time (inference + NMS)
            print(f'{s}Done. ({t2 - t1:.3f}s)')

            # Stream results
            if view_img:
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                else:  # 'video' or 'stream'
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release()  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                            save_path += '.mp4'
                        vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        print(f"Results saved to {save_dir}{s}")

    print(f'Done. ({time.time() - t0:.3f}s)')

修改后的函数

class DETECT_API:
    def __init__(self,opt):
        weights,imgsz = opt.weights,opt.img_size
        self.device = select_device(opt.device)
        # device = device_ if torch.cuda.is_available() else 'cpu'  # 设置代码执行的设备 cuda device, i.e. 0 or 0,1,2,3 or cpu
        # self.device = device
        self.half = self.device.type != 'cpu'  # half precision only supported on CUDA

        # self.imgsz = (imgsz, imgsz)  # 输入图片的大小 默认640(pixels)
        self.conf_thres = opt.conf_thres  # object置信度阈值 默认0.25  用在nms中
        self.iou_thres = opt.iou_thres  # 做nms的iou阈值 默认0.45   用在nms中
        # self.max_det = max_det  # 每张图片最多的目标数量  用在nms中
        self.classes = opt.classes  # 在nms中是否是只保留某些特定的类 默认是None 就是所有类只要满足条件都可以保留 --class 0, or --class 0 2 3
        self.agnostic_nms = opt.agnostic_nms  # 进行nms是否也除去不同类别之间的框 默认False
        self.augment = opt.augment  # 预测是否也要采用数据增强 TTA 默认False
        # self.visualize = False  # 特征图可视化 默认FALSE
        # self.half = False  # 是否使用半精度 Float16 推理 可以缩短推理时间 但是默认是False
        # self.dnn = False  # 使用OpenCV DNN进行ONNX推理


        # Load model
        self.model = attempt_load(weights, map_location=self.device)  # load FP32 model
        if self.half:
            self.model.half()  # to FP16

        if self.device.type != 'cpu':
            self.model(torch.zeros(1, 3, imgsz, imgsz).to(self.device).type_as(next(self.model.parameters())))  # run once

        self.stride = int(self.model.stride.max())  # model stride
        self.imgsz = check_img_size(imgsz, s=self.stride)  # check img_size
        # Get names and colors
        self.names = self.model.module.names if hasattr(self.model, 'module') else self.model.names
        colors = [[random.randint(0, 255) for _ in range(3)] for _ in self.names]

    def detect2(self,img):
        '''
        检测图像,输入图片数组
        Args:
            img: 图片数组

        Returns:字典{'class': cls, 'conf': conf, 'position': xywh}

        '''
        # Set Dataloader
        # dataset = LoadImages(img_path, img_size=self.imgsz, stride=self.stride)

        # 用于存放结果
        detections = []
        s = ''
        if True:
            # print(path)
            im0 = img*1
            # Padded resize
            img = letterbox(im0, self.imgsz, stride=self.stride)[0]
            # Convert
            img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
            img = ascontiguousarray(img) # np.ascontiguousarray(img)

            img = torch.from_numpy(img).to(self.device)
            img = img.half() if self.half else img.float()  # uint8 to fp16/32
            img /= 255.0  # 0 - 255 to 0.0 - 1.0
            if img.ndimension() == 3:
                img = img.unsqueeze(0)

            # Inference
            t1 = time_synchronized()
            pred = self.model(img, augment=self.augment)[0]

            # Apply NMS
            pred = non_max_suppression(pred, self.conf_thres, self.iou_thres, classes=self.classes, agnostic=self.agnostic_nms)
            t2 = time_synchronized()


            # Process detections
            for i, det in enumerate(pred):  # detections per image
                s = '%gx%g ' % img.shape[2:]  # print string
                if len(det):
                    # Rescale boxes from img_size to im0 size
                    det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

                    # Write results
                    for *xyxy, conf, cls in reversed(det):
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4))).view(-1).tolist()
                        xywh = [round(x) for x in xywh]
                        xywh = [xywh[0] - xywh[2] // 2, xywh[1] - xywh[3] // 2, xywh[2],
                                xywh[3]]  # 检测到目标位置,格式:(left,top,w,h)

                        cls = self.names[int(cls)]
                        conf = float(conf)
                        detections.append({'class': cls, 'conf': conf, 'position': xywh})
                        # 输出结果
        for i in detections:
            print(i)
        # Print time (inference + NMS)
        print(f'{s}Done. ({t2 - t1:.3f}s)')
        return detections

将代码封装为一个类,先载入模型,之后就可以传入图像进行图像检测了。
未来更好测试,写了各简单的GUI。使用python自带的tkinter库实现。

# 界面设计
    detect_state = False
    top = tk.Tk()
    top.title('YOLOV5-Lite Detect')
    top['bg'] = 'white'
    width = 300
    height = 150
    win_width = top.winfo_screenwidth()
    win_height = top.winfo_screenheight()
    center_place = str(int(win_width/2 - width/2))+'+'+str(int(win_height/2 - height/2))
    top.geometry(str(width)+'x'+str(height)+'+'+center_place)

    label = tk.Label(top,text='path')
    label.pack(fill='both')
    btn_img = tk.Button(top,text='选择图片',command=select_img)
    btn_img.pack(fill='both')
    btn_video = tk.Button(top,text='选择视频',command=select_video)
    btn_video.pack(fill='both')

    btn_detect = tk.Button(top,text='DETECT',command=mt_detect)
    btn_detect.pack(fill='both')

    top.mainloop()

完整代码(调用接口脚本)

import tkinter as tk
from tkinter import filedialog#用于打开文件  核心:filepath = filedialog.askopenfilename() #获得选择好的文件,单个文件

import argparse
import time
from pathlib import Path

import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random, ascontiguousarray


from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages, letterbox
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
    scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
from utils.plots import plot_one_box
from utils.torch_utils import select_device, load_classifier, time_synchronized

class DETECT_API:
    def __init__(self,opt):
        weights,imgsz = opt.weights,opt.img_size
        self.device = select_device(opt.device)
        # device = device_ if torch.cuda.is_available() else 'cpu'  # 设置代码执行的设备 cuda device, i.e. 0 or 0,1,2,3 or cpu
        # self.device = device
        self.half = self.device.type != 'cpu'  # half precision only supported on CUDA

        # self.imgsz = (imgsz, imgsz)  # 输入图片的大小 默认640(pixels)
        self.conf_thres = opt.conf_thres  # object置信度阈值 默认0.25  用在nms中
        self.iou_thres = opt.iou_thres  # 做nms的iou阈值 默认0.45   用在nms中
        # self.max_det = max_det  # 每张图片最多的目标数量  用在nms中
        self.classes = opt.classes  # 在nms中是否是只保留某些特定的类 默认是None 就是所有类只要满足条件都可以保留 --class 0, or --class 0 2 3
        self.agnostic_nms = opt.agnostic_nms  # 进行nms是否也除去不同类别之间的框 默认False
        self.augment = opt.augment  # 预测是否也要采用数据增强 TTA 默认False
        # self.visualize = False  # 特征图可视化 默认FALSE
        # self.half = False  # 是否使用半精度 Float16 推理 可以缩短推理时间 但是默认是False
        # self.dnn = False  # 使用OpenCV DNN进行ONNX推理


        # Load model
        self.model = attempt_load(weights, map_location=self.device)  # load FP32 model
        if self.half:
            self.model.half()  # to FP16

        if self.device.type != 'cpu':
            self.model(torch.zeros(1, 3, imgsz, imgsz).to(self.device).type_as(next(self.model.parameters())))  # run once

        self.stride = int(self.model.stride.max())  # model stride
        self.imgsz = check_img_size(imgsz, s=self.stride)  # check img_size
        # Get names and colors
        self.names = self.model.module.names if hasattr(self.model, 'module') else self.model.names
        colors = [[random.randint(0, 255) for _ in range(3)] for _ in self.names]

    def detect(self,img_path):
        '''
        检测图像,输入图片路径,不能输入视频路径
        Args:
            img_path: 图片路径

        Returns:字典{'class': cls, 'conf': conf, 'position': xywh}

        '''
        # Set Dataloader
        dataset = LoadImages(img_path, img_size=self.imgsz, stride=self.stride)

        # 用于存放结果
        detections = []
        s = ''
        for path, img, im0s, vid_cap in dataset:
            print(path)
            img = torch.from_numpy(img).to(self.device)
            img = img.half() if self.half else img.float()  # uint8 to fp16/32
            img /= 255.0  # 0 - 255 to 0.0 - 1.0
            if img.ndimension() == 3:
                img = img.unsqueeze(0)

            # Inference
            t1 = time_synchronized()
            pred = self.model(img, augment=self.augment)[0]

            # Apply NMS
            pred = non_max_suppression(pred, self.conf_thres, self.iou_thres, classes=self.classes, agnostic=self.agnostic_nms)
            t2 = time_synchronized()


            # Process detections
            for i, det in enumerate(pred):  # detections per image
                s = '%gx%g ' % img.shape[2:]  # print string
                im0 = im0s
                if len(det):
                    # Rescale boxes from img_size to im0 size
                    det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

                    # Write results
                    for *xyxy, conf, cls in reversed(det):
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4))).view(-1).tolist()
                        xywh = [round(x) for x in xywh]
                        xywh = [xywh[0] - xywh[2] // 2, xywh[1] - xywh[3] // 2, xywh[2],
                                xywh[3]]  # 检测到目标位置,格式:(left,top,w,h)

                        cls = self.names[int(cls)]
                        conf = float(conf)
                        detections.append({'class': cls, 'conf': conf, 'position': xywh})
                        # 输出结果
        for i in detections:
            print(i)
        # Print time (inference + NMS)
        print(f'{s}Done. ({t2 - t1:.3f}s)')
        return detections

    def detect2(self,img):
        '''
        检测图像,输入图片数组
        Args:
            img: 图片数组

        Returns:字典{'class': cls, 'conf': conf, 'position': xywh}

        '''
        # Set Dataloader
        # dataset = LoadImages(img_path, img_size=self.imgsz, stride=self.stride)

        # 用于存放结果
        detections = []
        s = ''
        if True:
            # print(path)
            im0 = img*1
            # Padded resize
            img = letterbox(im0, self.imgsz, stride=self.stride)[0]
            # Convert
            img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
            img = ascontiguousarray(img) # np.ascontiguousarray(img)

            img = torch.from_numpy(img).to(self.device)
            img = img.half() if self.half else img.float()  # uint8 to fp16/32
            img /= 255.0  # 0 - 255 to 0.0 - 1.0
            if img.ndimension() == 3:
                img = img.unsqueeze(0)

            # Inference
            t1 = time_synchronized()
            pred = self.model(img, augment=self.augment)[0]

            # Apply NMS
            pred = non_max_suppression(pred, self.conf_thres, self.iou_thres, classes=self.classes, agnostic=self.agnostic_nms)
            t2 = time_synchronized()


            # Process detections
            for i, det in enumerate(pred):  # detections per image
                s = '%gx%g ' % img.shape[2:]  # print string
                if len(det):
                    # Rescale boxes from img_size to im0 size
                    det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

                    # Write results
                    for *xyxy, conf, cls in reversed(det):
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4))).view(-1).tolist()
                        xywh = [round(x) for x in xywh]
                        xywh = [xywh[0] - xywh[2] // 2, xywh[1] - xywh[3] // 2, xywh[2],
                                xywh[3]]  # 检测到目标位置,格式:(left,top,w,h)

                        cls = self.names[int(cls)]
                        conf = float(conf)
                        detections.append({'class': cls, 'conf': conf, 'position': xywh})
                        # 输出结果
        for i in detections:
            print(i)
        # Print time (inference + NMS)
        print(f'{s}Done. ({t2 - t1:.3f}s)')
        return detections

def select_img():
    global detect_state
    pass
    filepath = filedialog.askopenfilename(title='选择图片',filetypes=[('图片', '*.jpg *.png'), ('All files', '*')])
    label['text'] = filepath
    detect_state = 1
def select_video():
    global detect_state
    pass
    filepath = filedialog.askopenfilename(title='选择视频', filetypes=[('视频', '*.mp4'), ('All files', '*')])
    label['text'] = filepath
    detect_state = 2

def mt_detect():
    global detect_state
    pass
    path = label['text']
    print(path)
    if not detect_state:
        print('请选择图片或视频')
    else:
        # opt.source = path
        if detect_state == 1:
            show_img(path)
        elif detect_state == 2:
            show_video(path)

    detect_state = 0

def show_img(img_path):
    # # 传入图片路径
    # detections = Detect.detect(img_path)

    # print(detections)
    img = cv2.imread(img_path)

    t1 = time.time()
    detections = Detect.detect2(img)
    t2 = time.time()
    for i in detections:
        # print(i)
        x, y, w, h = i['position']
        img = cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 3)
        img = cv2.putText(img, "{} {}".format(i['class'], round(i['conf'], 4)), (x, y - 5),
                          cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 1,
                          cv2.LINE_AA)
    img = cv2.putText(img, "{}s".format( round((t2 - t1), 3)),
                      (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 1, cv2.LINE_AA)

    cv2.imshow('yolov5-Lite img', img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

def show_video(video_path):
    cap = cv2.VideoCapture(video_path)
    while cap.isOpened():
        ret, img = cap.read()
        if ret:
            pass
            t1 = time.time()
            detections = Detect.detect2(img)
            t2 = time.time()
            for i in detections:
                # print(i)
                x, y, w, h = i['position']
                img = cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 3)
                img = cv2.putText(img, "{} {}".format(i['class'], round(i['conf'], 4)), (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 1, cv2.LINE_AA)
            img = cv2.putText(img, "{}FPS - {}s".format(round(1/(t2-t1),2), round((t2-t1),3)), (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 1,cv2.LINE_AA)

            cv2.imshow('yolov5-Lite img', img)
            # cv2.waitKey(1000)
            if cv2.waitKey(10) == ord('q'):
                break
        else:
            break
    cap.release()
    cv2.destroyAllWindows()



if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', nargs='+', type=str, default='runs/train/exp9/weights/best.pt',
                        help='model.pt path(s)')
    #parser.add_argument('--source', type=str,default='',help='source')  # file/folder, 0 for webcam
    parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
    parser.add_argument('--conf-thres', type=float, default=0.45, help='object confidence threshold')
    parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')
    parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--view-img', action='store_true', help='display results')
    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
    parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
    parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
    parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
    parser.add_argument('--augment', action='store_true', help='augmented inference')
    parser.add_argument('--update', action='store_true', help='update all models')
    parser.add_argument('--project', default='runs/detect', help='save results to project/name')
    parser.add_argument('--name', default='exp', help='save results to project/name')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    opt = parser.parse_args()
    print(opt)
    check_requirements(exclude=('pycocotools', 'thop'))

    # 初始化模型
    Detect = DETECT_API(opt)
    print('初始化完成/n')

    # 界面设计
    detect_state = False
    top = tk.Tk()
    top.title('YOLOV5-Lite Detect')
    top['bg'] = 'white'
    width = 300
    height = 150
    win_width = top.winfo_screenwidth()
    win_height = top.winfo_screenheight()
    center_place = str(int(win_width/2 - width/2))+'+'+str(int(win_height/2 - height/2))
    top.geometry(str(width)+'x'+str(height)+'+'+center_place)

    label = tk.Label(top,text='path')
    label.pack(fill='both')
    btn_img = tk.Button(top,text='选择图片',command=select_img)
    btn_img.pack(fill='both')
    btn_video = tk.Button(top,text='选择视频',command=select_video)
    btn_video.pack(fill='both')

    btn_detect = tk.Button(top,text='DETECT',command=mt_detect)
    btn_detect.pack(fill='both')

    top.mainloop()

如何运行

首先,你需要配置yolov5-Lite算法的运行环境,使能够正确的训练模型。配置过程与yolov5-7.0一致,如果报错,检测对应的库的版本是否符合条件,一般不需要最新的库,库的版本不要太高。训练好模型权重之后,parser.add_argument('--weights', nargs='+', type=str, default='runs/train/exp9/weights/best.pt', help='model.pt path(s)')修改成自己的权重路径即可。

一些截图

yolov5-Lite通过修改Detect.py代码实现灵活的检测图像、视频和打开摄像头检测,图像识别,YOLO,音视频
红色警告是torch版本问题,可以忽略,暂时没发现有什么影响。
yolov5-Lite通过修改Detect.py代码实现灵活的检测图像、视频和打开摄像头检测,图像识别,YOLO,音视频

最后

先到这吧,有问题可评论。文章来源地址https://www.toymoban.com/news/detail-764807.html

到了这里,关于yolov5-Lite通过修改Detect.py代码实现灵活的检测图像、视频和打开摄像头检测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 树莓派4B使用NCNN部署Yolov5-lite

    目录 文章目录 前言 一、树莓派配置NCNN 1.安装依赖 2.下载NCNN并编译 二、Yolov5-lite模型训练 1.源码地址 2.安装所需要的包  3.训练自己的数据集(YOLO格式) 4.模型训练  5.模型转换 6.onnx模型简化 三、树莓派部署lite模型 1.将onnx模型转换为ncnn 2.添加Yolov5-lite.cpp 3.修改eopt.param  4.修

    2024年02月05日
    浏览(64)
  • 基于树莓派Qt+opencv+yolov5-Lite+C++部署深度学习推理

            本文是基于 qt和opencv的dnn 深度学习推理模块,在树莓派上部署YOLO系列推理,适用于yolov5-6.1以及yolov5-Lite,相比直接用python的onnxruntime,用基于opencv的dnn模块,利用训练生成的onnx模型,即可快速部署,不需要在树莓派上额外安装深度学习的一系列环境,因为我们知道

    2024年04月16日
    浏览(64)
  • YOLOV5-LITE实时目标检测(onnxruntime部署+opencv获取摄像头+NCNN部署)python版本和C++版本

    使用yolov5-lite自带的export.py导出onnx格式,图像大小设置320,batch 1 之后可以使用 onnxsim对模型进一步简化 onnxsim参考链接:onnxsim-让导出的onnx模型更精简_alex1801的博客-CSDN博客 这个版本的推理FPS能有11+FPS 这两处换成自己的模型和训练的类别即可:     parser.add_argument(\\\'--modelpa

    2024年02月04日
    浏览(51)
  • Python —— 解析Yolov5 - detect.py

    Yolov5自带detect.py加入cv2简单操作      说明:im0为mat的原图     detect.py参数解析      1、运行detect.py的两种方式:           (1)、 使用命令 :                python detect.py --source ./testfiles/img1.jpg --weights runs/train/base/weights/best.pt --c

    2024年02月12日
    浏览(43)
  • yolov5的推理输出detect.py部分

        推理阶段是整个检测模型完成后,要对模型进行测试的部分。很重要的一部分,只有了解了这个部分,才能在比赛或者项目提交中很好的输出自己模型的检测结果。同时,推理输出对模型部署在不同的环境下也是十分重要的。 源码:https://github.com/ultralytics/yolov5 版本

    2024年02月04日
    浏览(41)
  • YOLOv5-6.x源码分析(一)---- detect.py

    这算是我的第一个正式博客文章吧,在准备动手写内容的时候,都有点无从下手的感觉。anyway,以后应该会写的越来越娴熟的。 YOLO系列我已经用了接近一年了吧,从去年暑假开始学习,打算入坑深度学习,其中跑过demo,自己用Flask搭配YOLOv5写过网页端实时检测,还看过源码

    2024年02月16日
    浏览(37)
  • YOLOv5的Tricks | 【Trick13】YOLOv5的detect.py脚本的解析与简化

    如有错误,恳请指出。 在之前介绍了一堆yolov5的训练技巧,train.py脚本也介绍得差不多了。之后还有detect和val两个脚本文件,还想把它们总结完。 在之前测试yolov5训练好的模型时,用detect.py脚本简直不要太方便,觉得这个脚本集成了很多功能,今天就分析源码一探究竟。 关

    2023年04月08日
    浏览(42)
  • 【Yolov5】保姆级别源码讲解之-推理部分detect.py文件

    克隆一下yolov5的代码 配置好项目所需的依赖包 opt 为执行可以传递的参数 具体的参数如图所示,比较重要的参数 weights权重文件、–source 数据集合 – data 数据集的配置 weights 权重文件 – source 为需要推理的原图 data参数 数据配置 imgsz 参数是训练配置图片的大小 device 设备信

    2024年02月08日
    浏览(40)
  • YOLOv5源码逐行超详细注释与解读(2)——推理部分detect.py

    前面简单介绍了YOLOv5的项目目录结构(直通车:YOLOv5源码逐行超详细注释与解读(1)——项目目录结构解析),对项目整体有了大致了解。 今天要学习的是 detect.py 。通常这个文件是用来预测一张图片或者一个视频的,也可以预测一个图片文件夹或者是一些网络流。下载后直

    2023年04月18日
    浏览(57)
  • 魔改并封装 YoloV5 Version7 的 detect.py 成 API接口以供 python 程序使用

    YoloV5 作为 YoloV4 之后的改进型,在算法上做出了优化,检测的性能得到了一定的提升。其特点之一就是权重文件非常的小,可以在一些配置更低的移动设备上运行,且提高速度的同时准确度更高。具体的性能见下图[^1]。本次使用的是最新推出的 YoloV5 Version7 版本。 GitHub 地址

    2024年01月17日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包