[论文笔记] SurroundOcc: Multi-Camera 3D Occupancy Prediction for Autonomous Driving

这篇具有很好参考价值的文章主要介绍了[论文笔记] SurroundOcc: Multi-Camera 3D Occupancy Prediction for Autonomous Driving。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Wei, Yi, et al. “Surroundocc: Multi-camera 3d occupancy prediction for autonomous driving.” Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023.

重点记录

  1. 将占用网格应用到多个相机构成的3D空间中;
    • 使用BEVFormer中的方法获取3D特征, 然后使用交叉熵损失计算loss;
    • 和BEVFormer区别是BEV中z轴高度为1, 这里为获取3D特征不能设置为1, 文中为16;
    • 注意会生成不同尺度的3D特征, 会在每个尺度上做一个监督;
  2. 提出了稠密占用网格语义标签生成方法;
    • 分离lidar点云中的静态场景和动态目标为两个集合
    • 将静态场景转换到参考坐标系中
    • 将运动目标归一化到相对坐标系中
    • 根据当前帧pose从参考坐标系中恢复静态场景
    • 根据当前帧中的物体ID将运动目标填充回来
    • 对当前恢复并填充完的点云进行泊松重建
    • 用最近邻给稠密给标签, 体素化得到占用网格

稠密语义标签生成

Needs

  • lidar 点云
  • lidar 点云bbox标注, 需要有类别和tracking ID
  • lidar 分割标注 / 或者图像分割标注

步骤

场景划分

  • 一个场景中的所有点云根据bbox标注划分为静态场景 P s P_s Ps 和动态目标 P o P_o Po 两个集合, 分割标注和静态场景处理相似, 记为 P s s e g P^{seg}_s Psseg, 注意: 只有关键帧才有语义标签
  • 静态场景, 分割标注所有点云变换到参考坐标系(通常为场景开始帧), 然后将所有点云合并
  • 动态目标点云按照tracking ID分组, 每组中的为不同frame中物体, 假如有物体1在场景中出现10帧,可以表示为 {1: [frame_i_pts, …]}, 这里的frame_i_pts表示在第i帧中出现的bbox框中的点云, 并且需要将frame_i_pts点云归一化操作, 1.bbox最小点作为坐标原点 2.根据yaw角旋转至y轴正方形; 然后将所有场景中物体点云合并, 得到{1: pts1, …}
  • 动态目标 P o P_o Po 中点云根据tracking ID分别填充到静态场景 P s P_s Ps 和分割标注 P s s e g P^{seg}_s Psseg中, 得到稠密点云
    • 注意: 根据bbox将框外的点云删除

获取当前帧稠密标签

  • 根据当前帧位姿将静态场景 P s P_s Ps , 分割标注 P s s e g P^{seg}_s Psseg 变换到当前帧中, 并根据设置的点云范围裁切, 记为 P c u r P_{cur} Pcur P c u r s e g P^{seg}_{cur} Pcurseg
  • P c u r P_{cur} Pcur转换成mesh, 然后使用泊松重建, 再离散化得到占用网格(体素), 此步骤用来填充空洞
  • 根据 P c u r s e g P^{seg}_{cur} Pcurseg 采用最近邻算法给转换后的占用网格赋值语义标签, 得到稠密占用网格语义标签

Q&A

  • 场景中所有帧都会cut动态物体后转换到参考坐标系时, 会不会存在某些帧动态物体未bbox导致没有cut掉, 导致在最终参考坐标系中合并的静态场景中出现动态目标?
    • 可能存在上述情况, 静态场景中出现动态目标, 将该场景变换到当前帧, 再填充保留的动态目标, 会出现同一目标出现在两个位置, 导致标签存在歧义; 所以, 需要bbox标注准确且不能漏标; nuscenes场景中的每一帧点云都有bbox标注, 分割语义标签只有关键帧有;

代码

surroundocc 如何处理空洞点,SSC/OCC,论文笔记,论文阅读,occ

open3d 可视化 Occ网格

代码
surroundocc 如何处理空洞点,SSC/OCC,论文笔记,论文阅读,occ文章来源地址https://www.toymoban.com/news/detail-765392.html

到了这里,关于[论文笔记] SurroundOcc: Multi-Camera 3D Occupancy Prediction for Autonomous Driving的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • CFT:Multi-Camera Calibration Free BEV Representation for 3D Object Detection——论文笔记

    参考代码:暂无 介绍:在相机数据作为输入的BEV感知算法中很多是需要显式或是隐式使用相机内外参数的,但是相机的参数自标定之后并不是一直保持不变的,这就对依赖相机标定参数的算法带来了麻烦。如何提升模型对相机参数鲁棒性,甚至是如何去掉相机参数成为一种趋

    2024年02月01日
    浏览(52)
  • 论文精读《BEVDet: High-Performance Multi-Camera 3D Object Detection in Bird-Eye-View》

    背景介绍:二维的目标检测算法启发我们去寻找一个高效可用的三维目标检测算法 自动驾驶通过感知周围环境来做出决定,这是视觉领域中最复杂的场景之一。范式创新在解决二维目标检测中的成功激励着我们去寻找一个简练的、可行的、可扩展的范例,从根本上推动该领域

    2024年01月18日
    浏览(50)
  • 【CV论文精读】【BEV感知】BEVDet: High-Performance Multi-Camera 3D Object Detection in Bird-Eye-View

    【CV论文精读】【BEV感知】BEVDet: High-Performance Multi-Camera 3D Object Detection in Bird-Eye-View BEVDet:鸟瞰下的高性能多摄像机三维目标检测 自动驾驶感知周围环境进行决策,这是视觉感知中最复杂的场景之一。范式创新在解决2D目标检测任务中的成功激励我们寻求一种优雅、可行和可

    2024年02月22日
    浏览(46)
  • 超全 | 基于纯视觉Multi-Camera的3D感知方法汇总!

    近两年,基于纯视觉BEV方案的3D目标检测备受关注,all in one方式,确实能将基于camera的3D检测算法性能提升一大截,甚至直逼激光雷达方案,这次整理了领域中一些备受关注的multi-camera bev纯视觉感知方案,包括DETR3D、BEVDet、ImVoxelNet、PETR、BEVFormer、BEVDepth、BEVDet4D、BEVerse等!

    2023年04月08日
    浏览(37)
  • 实时 3D 深度多摄像头跟踪 Real-time 3D Deep Multi-Camera Tracking

    论文url https://arxiv.org/abs/2003.11753 提出了一个名为Deep Multi-Camera Tracking (DMCT)的实时3D多摄像机跟踪系统。该系统旨在解决使用多个RGB摄像机进行3D人群跟踪的挑战性任务。 多个RGB摄像机的实时视频帧,每个视频帧是一个彩色图像,具有高度和宽度的像素矩阵。 基础卷积层(Ba

    2024年04月09日
    浏览(72)
  • PETRv2: A Unified Framework for 3D Perception from Multi-Camera Images

    PETRv2: A Unified Framework for 3D Perception from Multi-Camera Images 旷视 本文的目标是 通过扩展 PETR,使其有时序建模和多任务学习的能力 以此建立一个 强有力且统一的框架。 本文主要贡献: 将 位置 embedding 转换到 时序表示学习,时序的对齐 是在 3D PE 上做 姿态变换实现的。提出了

    2024年02月16日
    浏览(43)
  • 【论文笔记】A Simple Framework for 3D Occupancy Estimation in Autonomous Driving (SimpleOccupancy)

    原文链接:https://arxiv.org/abs/2303.10076 本文提出基于环视图像进行3D占用估计的简单框架,探索了网络设计、优化和评估。网络设计方面,虽然输出形式与单目深度估计和立体匹配不同,但网络结构与立体匹配网络相似(如下图所示),可以使用立体匹配的经验设计网络。优化

    2024年02月02日
    浏览(55)
  • 【论文笔记】CRN: Camera Radar Net for Accurate, Robust, Efficient 3D Perception

    原文链接:https://arxiv.org/abs/2304.00670   本文提出两阶段融合方法CRN,能使用相机和雷达生成语义丰富且位置精确的BEV特征。具体来说,首先将图像透视特征转换到BEV下,该步骤依赖雷达,称为雷达辅助的视图变换(RVT)。由于转换得到的BEV特征并非完全精确,接下来的多模

    2024年02月03日
    浏览(64)
  • 论文阅读笔记《FLEX: Extrinsic Parameters-free Multi-view 3D Human Motion Reconstruction》

    1.简介 在3D人体姿态估计中存在遮挡和模糊问题,使用多相机可能会缓解这些困难,因为不同的视角可以补偿这些遮挡并用于相互一致性。目前的3D人体姿态估计中大多数都是单视角的,有一部分是多视角的,但是他们的方法依赖于相机之间的相对位置,这要用到相机的外参。

    2024年02月04日
    浏览(47)
  • 【论文笔记】A Robust Diffusion Modeling Framework for Radar Camera 3D Object Detection

    原文链接:https://openaccess.thecvf.com/content/WACV2024/html/Wu_A_Robust_Diffusion_Modeling_Framework_for_Radar_Camera_3D_Object_WACV_2024_paper.html 本文使用概率去噪扩散模型的技术,提出完全可微的雷达-相机框架。使用校准矩阵将雷达点云投影到图像上后,在特征编码器和BEV下的Transformer检测解码器中

    2024年01月18日
    浏览(55)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包