Ansys Lumerical | 用于增强现实系统的表面浮雕光栅

这篇具有很好参考价值的文章主要介绍了Ansys Lumerical | 用于增强现实系统的表面浮雕光栅。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

在本示例中,我们使用 RCWA 求解器设计了一个斜面浮雕光栅 (SRG),它将用于将光线耦合到单色增强现实 (AR) 系统的波导中。光栅的几何形状经过优化,可将正常入射光导入-1 光栅阶次。
然后我们将光栅特性导出为 Lumerical Sub-Wavelength Model (LSWM) JSON 格式,以便在 Speos 的系统级仿真中对 SRG 进行建模(请参阅 "Augmented Reality Optical System”).

Ansys Lumerical | 用于增强现实系统的表面浮雕光栅,Ansys,Lumerical,光学

概述

Ansys Lumerical | 用于增强现实系统的表面浮雕光栅,Ansys,Lumerical,光学

SRG 几何图形根据其倾斜角度、填充因子和高度进行参数化,如下所示:

Ansys Lumerical | 用于增强现实系统的表面浮雕光栅,Ansys,Lumerical,光学

光栅和基板的折射率为1.8。光栅被空气包围。周期固定在 393 nm。
将对光栅进行优化,以将波长为 550 nm 的光传输到 -1 光栅阶次。RCWA 求解器用于SRG的优化和完整的特性描述,具体包含定义仿真参数和运行仿真这两个步骤。

第 1 步:耦合光栅的优化

使用内置的粒子群优化(PSO)实用程序,优化SRG的倾斜角、填充因子和光栅高度,以最大限度地提高在法向入射时 550 nm波长下S偏振的透射率。

第 2 步:完整特性描述和数据导出

光栅优化是使用来自光栅上方的正常入射光进行的。但是,一旦选择了优化的几何结构,就必须针对光线追踪仿真中预期的入射角范围以及前进和后退方向计算完整的光栅特性。然后将结果导出到一个 JSON 文件,该文件可以使用脚本在 Speos 或 Zemax 中使用。

运行和结果

第 1 步:优化 SRG 几何结构

  1. 打开并运行模拟文件 ar_srg.fsp 

  2. 右键单击“grating_orders”结果,然后选择“ 新建可视化工具 >可视化 ”。

  3. 单击并拖动绘图以放大“Ts_grating”结果(绿线)。

Ansys Lumerical | 用于增强现实系统的表面浮雕光栅,Ansys,Lumerical,光学

这些结果表明,初始设计将大约56%的正常入射S偏振光引导到-1光栅阶次。现在,我们将使用优化实用程序优化 光栅几何结构以增加此值。

  1. 在“优化和扫描”窗口中运行优化对象“optimization”。

  2. 优化完成后,通过右键单击“优化”对象并选择“应用最佳解决方案”来应用最佳 几何图形。

“优化”对象将优化 SRG 的倾斜角度、填充因子和光栅高度,这些被定义为“slanted_grating” 结构组 的参数。传输到 S 偏振的 -1 光栅阶次中的功率用作品质因数 (FOM),如“优化”对象的 FOM 脚本中定义。结果如下所示:

Ansys Lumerical | 用于增强现实系统的表面浮雕光栅,Ansys,Lumerical,光学

在优化几何结构下,-1光栅阶数的衍射效率约为94.7%。

请注意,这种类型的光栅可以具有此FOM的多个局部最大值[1]。虽然内置的PSO工具是一种方便的快速优化方法,但可以使用更高级的优化方法来充分探索参数空间。有关详细信息,请参阅进一步使用模型部分。

第 2 步:完整特性描述和数据导出

  • 传播方向 :两者

  • 入射角 :范围

  • 最小θ :0

  • 最大θ :85

  • θ点 :18

  • 最小 phi :0

  • 最大 phi :360

  • PHI点 数 :37

  1. 在同一模拟文件中,为“RCWA”对象设置以下属性:

  2. 通过单击工具栏中的“运行”按钮来运行 RCWA 模拟。

  3. 运行脚本 LSWM_JSON_export.lsf 。

在此步骤中,针对前向和后向的指定入射角范围计算优化 SRG的S参数。然后将这些结果导出为适合使用脚本文件导入Speos或Zemax的LSWM JSON格式。

使用参数更新模型

光栅几何形状

SRG 几何体被定义为结构组 ,这使得创建用户指定的几何体参数(如倾斜角度和填充因子)变得更加容易。用户可以通过更改结构组的设置脚本来修改此 SRG 几何形状,例如在光栅上添加欠蚀刻或过度蚀刻。或者,可以通过添加新的结构组并编写自定义安装脚本来创建不同的光栅几何体。

优化参数

优化变化的参数及其边界在优化扫描对象中定义。这些可以通过右键单击“优化”对象并选择“编辑”来更改。仿真对象的几乎任何属性都可以用作优化参数,但通常使用用户在结构组或分析组中创建的几何参数。

进一步发展模型

自定义优化品质因数

在本例中,SRG针对单一波长和入射角进行了优化。但是,也可以使用包含一系列波长或入射角的FOM,例如在整个视场上进行优化。

为此,请指定要包含在 RCWA 求解器对象的 FOM 中的波长和入射角。RCWA 求解器的结果将作为数据集返回,其中波长/频率、θ 和 phi 作为参数。然后,可以在优化扫描对象的 FOM 脚本中处理结果,以计算包含完整范围的 FOM。请注意,FOM 最终必须是优化实用程序的单个实数。

替代优化技术

内置的优化实用程序使用粒子群优化方法,用于该光栅的优化。 但是,可以通过Ansys optiSLang使用更高级的优化技术,也可以通过Lumerical Python API使用Python 库。用户还可以通过脚本使用内置实用程序定义不同的优化方法。参数空间的初始探索也可以使用参数扫描工具执行。

相关出版物

  1. Jonathan S. Maikisch 和 Thomas K. Gaylord,“最佳平行面倾斜表面浮雕光栅”,Appl. Opt. 46, 3674-3681 (2007)文章来源地址https://www.toymoban.com/news/detail-765476.html

到了这里,关于Ansys Lumerical | 用于增强现实系统的表面浮雕光栅的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 用于增强现实的实时可穿带目标检测:基于YOLOv8进行ONNX转换和部署

    点击蓝字 关注我们 关注并星标 从此不迷路 计算机视觉研究院 公众号ID | 计算机视觉研究院 学习群 | 扫码在主页获取加入方式 计算机视觉研究院专栏 Column of Computer Vision Institute 今天给大家介绍了一种在增强现实(AR)环境中使用机器学习(ML)进行实时目标检测的软件体

    2024年02月04日
    浏览(37)
  • 基于增强现实的多线索远程工业协同系统

    目录 引言 1 相关工作 1.1 工作场景捕捉与共享 1.2 共享远程线索 2 系统设计 2.1 系统结构 图1 2.2 多模态线索框架 图2 图3 2.3 线索虚实扩散算法 3 用户研究 3.1 实验流程 3.2 实验任务与环境 图4 图5 图6 3.3 任务记录 4 实验结果分析 4.1 任务时间 图7 4.2 任务准确率 图8 图9 4.3 调查问

    2024年04月13日
    浏览(19)
  • 增强现实的未来:从科幻到现实

    增强现实(Augmented Reality,AR)是一种将虚拟环境与现实环境相结合的技术,使用户能够在现实世界中与虚拟对象进行互动。AR技术的发展历程可以分为以下几个阶段: 1.1 早期阶段(1960年代至1980年代) 在这个阶段,AR技术的研究主要集中在虚拟和现实的融合技术,以及人机交

    2024年02月03日
    浏览(40)
  • 虚拟现实与增强现实技术的商业应用

      随着科技的不断发展,虚拟现实(Virtual Reality,简称VR)与增强现实(Augmented Reality,简称AR)技术正日益成为商业领域中的重要创新力量。这两种技术为企业带来了前所未有的商机,从零售到医疗,从教育到娱乐,无处不在的商业应用正在重新定义着我们的生活。本文将探

    2024年02月12日
    浏览(37)
  • 虚拟现实(VR)和增强现实(AR)

    虚拟现实(Virtual Reality,VR)和增强现实(Augmented Reality,AR)是两种前沿的计算机技术,它们正在改变人们与数字世界的互动方式。虚拟现实创造了一个计算机生成的全新虚拟环境,而增强现实则将虚拟元素叠加到真实世界中。 虚拟现实通过利用头戴设备(如VR头显)和追踪

    2024年02月10日
    浏览(43)
  • ChatGPT有话说:虚拟现实 VS 增强现实

    以下内容均为ChatGPT根据用户引导和提示作出的阐述和说明。 虚拟现实和增强现实是当前最受瞩目的创新技术。虚拟现实是指利用计算机生成的虚拟环境,用户可以通过佩戴VR头戴式显示器等设备完全沉浸在其中,感受到身临其境的感觉。而增强现实则是将计算机生成的虚拟内

    2024年02月12日
    浏览(39)
  • 计算机视觉的未来:增强现实与虚拟现实

    感谢您提供如此详细的任务说明和要求。我将尽我所能按照您的指引来撰写这篇技术博客文章。 计算机视觉作为人工智能的重要分支,在过去的几十年里取得了飞速的发展。从最初的图像识别和物体检测,到现在的3D重建、语义分割、行为理解等诸多前沿方向,计算机视觉的应用

    2024年04月08日
    浏览(45)
  • 虚拟现实与增强现实:如何塑造未来的人机交互

    虚拟现实(Virtual Reality, VR)和增强现实(Augmented Reality, AR)是两种重要的人机交互技术,它们在过去几年中得到了广泛的关注和应用。VR 是一种完全虚构的环境,用户通过戴上特殊设备(如头盔和手套)进入一个虚拟的世界,与其中的对象进行互动。而 AR 则是将虚拟对象O

    2024年01月16日
    浏览(45)
  • 人类技术变革简史:虚拟现实与增强现实的应用

    虚拟现实(Virtual Reality,简称VR)和增强现实(Augmented Reality,简称AR)是近年来迅速发展的人工智能技术领域。它们在游戏、娱乐、教育、医疗等多个领域都有广泛的应用。本文将从背景、核心概念、算法原理、代码实例、未来发展趋势等多个方面深入探讨这两种技术的发展历程和

    2024年04月17日
    浏览(69)
  • 增强现实与虚拟现实的虚拟现实虚拟现实虚拟现实虚拟现实虚拟现实技术

    作者:禅与计算机程序设计艺术 《增强现实与虚拟现实的虚拟现实虚拟现实虚拟现实虚拟现实技术》 1.1. 背景介绍 虚拟现实 (VR) 和增强现实 (AR) 技术是近年来快速发展的计算机图形学技术之一。这些技术为用户提供了全新的交互体验,尤其是在游戏、娱乐、医疗和教育等领

    2024年02月11日
    浏览(31)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包