【数据结构和算法】找到最高海拔

这篇具有很好参考价值的文章主要介绍了【数据结构和算法】找到最高海拔。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

其他系列文章导航

Java基础合集
数据结构与算法合集

设计模式合集

多线程合集

分布式合集

ES合集


文章目录

其他系列文章导航

文章目录

前言

一、题目描述

二、题解

2.1 前缀和的解题模板

2.1.1 最长递增子序列长度

2.1.2 寻找数组中第 k 大的元素

2.1.3 最长公共子序列长度

2.1.4 寻找数组中第 k 小的元素

2.2 方法一:前缀和(差分数组)

三、代码

3.2 方法一:前缀和(差分数组)

四、复杂度分析

4.2 方法一:前缀和(差分数组)


前言

这是力扣的 1732 题,难度为简单,解题方案有很多种,本文讲解我认为最奇妙的一种。

这是一道非常经典的前缀和问题,虽然看似简单,但它却能让你深入理解前缀和的特点。


一、题目描述

有一个自行车手打算进行一场公路骑行,这条路线总共由 n + 1 个不同海拔的点组成。自行车手从海拔为 0 的点 0 开始骑行。

给你一个长度为 n 的整数数组 gain ,其中 gain[i] 是点 i 和点 i + 1 的 净海拔高度差0 <= i < n)。请你返回 最高点的海拔 。

示例 1:

输入:gain = [-5,1,5,0,-7]
输出:1
解释:海拔高度依次为 [0,-5,-4,1,1,-6] 。最高海拔为 1 。

示例 2:

输入:gain = [-4,-3,-2,-1,4,3,2]
输出:0
解释:海拔高度依次为 [0,-4,-7,-9,-10,-6,-3,-1] 。最高海拔为 0 。

提示:

  • n == gain.length
  • 1 <= n <= 100
  • -100 <= gain[i] <= 100

二、题解

2.1 前缀和的解题模板

前缀和算法是一种在处理数组或链表问题时常用的技巧,它可以有效地减少重复计算,提高算法的效率。下面是一些常见的使用前缀和算法的题目以及解题思路:

2.1.1 最长递增子序列长度

题目描述:给定一个无序数组,求最长递增子序列的长度。

解题思路:可以使用前缀和和单调栈来解决这个问题。首先,遍历数组,计算出前缀和。然后,使用单调栈记录当前递增子序列的起始位置。遍历数组时,如果当前元素大于前缀和,说明可以扩展当前递增子序列,将当前位置入栈。如果当前元素小于等于前缀和,说明当前递增子序列已经结束,弹出栈顶元素。最后,栈中剩余的元素即为最长递增子序列的起始位置,计算长度即可。

2.1.2 寻找数组中第 k 大的元素

题目描述:给定一个无序数组和一个整数k,找到数组中第k大的元素。

解题思路:可以使用前缀和和快速选择算法来解决这个问题。首先,计算出数组的前缀和。然后,使用快速选择算法在数组中找到第k小的元素。具体实现中,每次选择一个枢轴元素,将数组分成两部分,小于枢轴的元素和大于枢轴的元素。如果枢轴左边的元素个数小于k,则在左边的子数组中继续查找;如果枢轴左边的元素个数大于等于k,则在右边的子数组中继续查找。最后,当找到第k小的元素时,返回该元素即可。

2.1.3 最长公共子序列长度

题目描述:给定两个字符串,求最长公共子序列的长度。

解题思路:可以使用动态规划算法来解决这个问题。如果字符串长度分别为m和n,则可以定义一个二维数组dp[m+1][n+1],其中dp[i][j]表示字符串s1的前i个字符和字符串s2的前j个字符的最长公共子序列长度。根据动态规划的思想,状态转移方程为dp[i][j] = max(dp[i-1][j-1], dp[i-1][j], dp[i][j-1])。如果s1[i-1]等于s2[j-1],则dp[i][j] = dp[i-1][j-1] + 1;否则dp[i][j]取其他两种情况中的较大值。最终结果为dp[m][n]。

2.1.4 寻找数组中第 k 小的元素

题目描述:给定一个无序数组和一个整数k,找到数组中第k小的元素。

解题思路:可以使用前缀和和快速选择算法来解决这个问题。具体实现与寻找第k大元素类似,只不过最后返回的是第k小的元素而非第k大的元素。

2.2 方法一:前缀和(差分数组)

解这个问题需要注意以下几点:

  1. 理解题意:首先,要明确题目的要求,理解自行车手的骑行路线和海拔变化的关系。根据题目描述,自行车手从海拔为0的点开始骑行,通过一系列的海拔变化,最终要找到最高点的海拔。
  2. 分析海拔变化:根据给定的gain数组,可以分析出自行车手的海拔变化。gain[i]表示点i和点i+1之间的净海拔高度差。通过累加这些高度差,可以计算出经过每个点后的总海拔变化。
  3. 确定最高点的海拔:在计算出总的海拔变化后,需要找到最高点的海拔。这可以通过比较累加海拔和初始海拔的大小来实现。最高点的海拔即为累加海拔和初始海拔中的较大值。
  4. 注意数组边界条件:在处理gain数组时,需要注意数组的边界条件。例如,gain[0]表示起点和终点之间的海拔高度差,而gain[n-1]表示倒数第二个点和终点之间的海拔高度差。
  5. 代码实现:最后,根据上述分析,可以使用Python等编程语言实现相应的算法。在实现过程中,需要注意代码的简洁性和可读性,同时也要注意处理可能的异常情况。

思路与算法:

我们假设每个点的海拔为 hi ,由于 gain[i] 表示第 i 个点和第 i+1 个点的海拔差,因此

gain[i] = h(i+1) − hi,那么: 

【数据结构和算法】找到最高海拔,数据结构与算法合集,数据结构,算法,java,python,c++,go,动态规划

可以发现,每个点的海拔都可以通过前缀和的方式计算出来。因此,我们只需要遍历一遍数组,求出前缀和的最大值,即为最高点的海拔。

实际上题目中的 gain 数组是一个差分数组,对差分数组求前缀和即可得到原海拔数组。然后求出原海拔数组的最大值即可。


三、代码

3.2 方法一:前缀和(差分数组)

Java版本:

class Solution {
    public int largestAltitude(int[] gain) {
    int high = 0, max = 0;
        for (int h : gain) {
            high += h;
            max = Math.max(max, high);
        }
        return max;
    }
}

C++版本:

class Solution {
public:
    int largestAltitude(std::vector<int>& gain) {
        int high = 0, max = 0;
        for (int h : gain) {
            high += h;
            max = std::max(max, high);
        }
        return max;
    }
};

Python版本:

class Solution:
    def largestAltitude(self, gain: List[int]) -> int:
        high = 0
        max_altitude = 0
        for h in gain:
            high += h
            max_altitude = max(max_altitude, high)
        return max_altitude

Go版本:文章来源地址https://www.toymoban.com/news/detail-765539.html

func largestAltitude(gain []int) int {
    high, max := 0, 0
    for _, h := range gain {
        high += h
        if high > max {
            max = high
        }
    }
    return max
}

func main() {
    gain := []int{-5, 1, 5, 0, -7}
    result := largestAltitude(gain)
    fmt.Println(result)
}

四、复杂度分析

4.2 方法一:前缀和(差分数组)

  • 时间复杂度: O(n),其中 n 为数组 gain 的长度。
  • 空间复杂度: O(1)。

到了这里,关于【数据结构和算法】找到最高海拔的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据结构与算法设计分析—— 数据结构及常用算法

    1、顺序表与链表 线性表是 线性结构 ,是包含n个数据元素的有限序列,通过顺序存储的线性表称为 顺序表 ,它是将线性表中所有元素按照其逻辑顺序,依次存储到指定存储位置开始的一块连续的存储空间里;而通过链式存储的 链表 中,每个结点不仅包含该元素的信息,还

    2024年02月07日
    浏览(59)
  • 数据结构和算法——数据结构

    目录 线性结构  队列结构的队列 链表结构的队列 链表的面试题 单向链表应用场景 约瑟夫环问题 栈结构 中缀表达式 前缀表达式 后缀表达式 非线性结构 图 递归解决迷宫问题 递归解决八皇后问题 顺序存储方式,顺序表 常见的顺序存储结构有:数组、队列、链表、栈 链式存

    2024年02月07日
    浏览(53)
  • 数据结构与算法 --- 数据结构绪论

    早期人们都把计算机理解为数值计算工具,就是感觉计算机当然是用来计算的,所以计算机解决问题,应该是先从具体问题中抽象出一个适当的数据模型,设计出一个解此数据模型的算法,然后再编写程序,得到一个实际的软件。 可现实中,我们更多的不是解决数值计算的问

    2024年02月14日
    浏览(52)
  • 数据结构与算法——数据结构有哪些,常用数据结构详解

    数据结构是学习数据存储方式的一门学科,那么,数据存储方式有哪几种呢?下面将对数据结构的学习内容做一个简要的总结。 数据结构大致包含以下几种存储结构: 线性表,还可细分为顺序表、链表、栈和队列; 树结构,包括普通树,二叉树,线索二叉树等; 图存储结构

    2024年02月15日
    浏览(60)
  • 数据结构与算法——什么是数据结构

    当你决定看这篇文章,就意味着系统学习数据结构的开始。下面我们先来讲什么是数据结构。 数据结构,直白地理解,就是研究数据的存储方式。 我们知道,数据存储只有一个目的,即为了方便后期对数据的再利用,就如同我们使用数组存储  {1,2,3,4,5}  是为了后期取得它们

    2024年02月15日
    浏览(53)
  • 【数据结构与算法】不就是数据结构

      嗨喽小伙伴们你们好呀,好久不见了,我已经好久没更新博文了!之前因为实习没有时间去写博文,现在已经回归校园了。我看了本学期的课程中有数据结构这门课程(这么课程特别重要),因为之前学过一点,所以就想着深入学习一下子。毕竟这门课程对于 考研 和 就业

    2024年02月07日
    浏览(48)
  • 【数据结构与算法】1.数据结构绪论

    📚博客主页:爱敲代码的小杨. ✨专栏:《Java SE语法》 ❤️感谢大家点赞👍🏻收藏⭐评论✍🏻,您的三连就是我持续更新的动力❤️ 🙏小杨水平有限,欢迎各位大佬指点,相互学习进步! 数据结构是计算机中存储、组织数据的方式。 数据结构是一种具有一定逻辑关系,

    2024年01月23日
    浏览(52)
  • 【数据结构与算法】一、数据结构的基本概念

    抽象数据类型(ADT)定义举例:Circle的定义 如何处理杂乱无章且多样化的数据: 数据元素 :数据中的个体被称为数据元素。 数据对象 :性质相同的数据元素组成的集合。 数据结构 :数据元素加上数据元素之间的关系,就形成了数据结构。 逻辑结构 :数据结构的逻辑模型。

    2023年04月17日
    浏览(96)
  • 数据结构--》掌握数据结构中的查找算法

            当你需要从大量数据中查找某个元素时,查找算法就变得非常重要。         无论你是初学者还是进阶者,本文将为你提供简单易懂、实用可行的知识点,帮助你更好地掌握查找在数据结构和算法中的重要性,进而提升算法解题的能力。接下来让我们开启数据

    2024年02月08日
    浏览(54)
  • 数据结构--》掌握数据结构中的排序算法

            当我们面对海量数据时,如何高效地将其排序是数据结构领域中一个重要的问题。排序算法作为其中的关键部分,扮演着至关重要的角色。         无论你是初学者还是进阶者,本文将为你提供简单易懂、实用可行的知识点,帮助你更好地掌握排序算法在数据

    2024年02月08日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包