【CNN回归预测】基于卷积神经网络的数据回归预测附matlab完整代码

这篇具有很好参考价值的文章主要介绍了【CNN回归预测】基于卷积神经网络的数据回归预测附matlab完整代码。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

⛄ 内容介绍

基于卷积神经网络(Convolutional Neural Network,CNN)的数据回归预测是一种利用CNN模型来进行数据回归问题的预测和估计。以下是一种可能的实施步骤:

  1. 数据准备:收集和整理用于回归预测的数据集,包括输入特征和对应的目标值。确保数据集的质量和充分性。
  2. 数据预处理:对数据进行预处理,如归一化、标准化、特征工程等,以提高模型的训练效果和泛化能力。
  3. CNN模型设计:设计一个合适的卷积神经网络模型,通常包括卷积层、池化层、全连接层等。根据具体问题的特点,可以选择合适的网络结构和超参数。
  4. 模型训练:使用准备好的数据集对CNN模型进行训练。通过反向传播算法和优化器(如梯度下降)来最小化预测值与真实值之间的损失函数,以更新模型的权重和偏置。
  5. 模型评估:使用测试数据集对训练好的CNN模型进行评估,计算预测结果与真实值之间的误差指标,如均方误差(Mean Squared Error,MSE)、均方根误差(Root Mean Squared Error,RMSE)等。
  6. 预测与推断:使用训练好的CNN模型对新的输入数据进行预测和推断,得到回归预测结果。
  7. 模型优化:根据评估结果和实际需求,对CNN模型进行优化和调整,如调整网络结构、增加正则化手段、调整学习率等,以提高模型的性能和精度。
  8. 模型应用:将优化后的CNN模型应用于实际场景中,进行数据回归预测和估计。

基于卷积神经网络的数据回归预测可以应用于各种领域,如图像处理、自然语言处理、时间序列分析等,以实现对复杂数据关系的准确预测和估计。

⛄ 部分代码

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res = xlsread('数据集.xlsx');

%%  划分训练集和测试集
temp = randperm(103);

P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);

P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
%   将数据平铺成1维数据只是一种处理方式
%   也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
%   但是应该始终和输入层数据结构保持一致
p_train =  double(reshape(p_train, 7, 1, 1, M));
p_test  =  double(reshape(p_test , 7, 1, 1, N));
t_train =  double(t_train)';
t_test  =  double(t_test )';

%%  构造网络结构
layers = [
 imageInputLayer([7, 1, 1])                         % 输入层 输入数据规模[7, 1, 1]
 
 convolution2dLayer([3, 1], 16, 'Padding', 'same')  % 卷积核大小 3*1 生成16张特征图
 batchNormalizationLayer                            % 批归一化层
 reluLayer                                          % Relu激活层
 
 maxPooling2dLayer([2, 1], 'Stride', [1, 1])        % 最大池化层 池化窗口 [2, 1] 步长 [1, 1]

 convolution2dLayer([3, 1], 32, 'Padding', 'same')  % 卷积核大小 3*1 生成32张特征图
 batchNormalizationLayer                            % 批归一化层
 reluLayer                                          % Relu激活层

 dropoutLayer(0.1)                                  % Dropout层
 fullyConnectedLayer(1)                             % 全连接层
 regressionLayer];                                  % 回归层

%%  参数设置
options = trainingOptions('sgdm', ...      % SGDM 梯度下降算法
    'MiniBatchSize', 32, ...               % 批大小,每次训练样本个数 32
    'MaxEpochs', 1200, ...                 % 最大训练次数 1200
    'InitialLearnRate', 1e-2, ...          % 初始学习率为0.01
    'LearnRateSchedule', 'piecewise', ...  % 学习率下降
    'LearnRateDropFactor', 0.1, ...        % 学习率下降因子
    'LearnRateDropPeriod', 800, ...        % 经过 800 次训练后 学习率为 0.01 * 0.1
    'Shuffle', 'every-epoch', ...          % 每次训练打乱数据集
    'Plots', 'training-progress', ...      % 画出曲线
    'Verbose', false);

%%  训练模型
net = trainNetwork(p_train, t_train, layers, options);

%%  模型预测
t_sim1 = predict(net, p_train);
t_sim2 = predict(net, p_test );

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);

%%  绘制网络分析图
analyzeNetwork(layers)

%%  绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['RMSE=' num2str(error1)]};
title(string)
xlim([1, M])
grid

figure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['RMSE=' num2str(error2)]};
title(string)
xlim([1, N])
grid

%%  相关指标计算
% R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

% MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

% MBE
mbe1 = sum(T_sim1' - T_train) ./ M ;
mbe2 = sum(T_sim2' - T_test ) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

%%  绘制散点图
sz = 25;
c = 'b';

figure
scatter(T_train, T_sim1, sz, c)
hold on
plot(xlim, ylim, '--k')
xlabel('训练集真实值');
ylabel('训练集预测值');
xlim([min(T_train) max(T_train)])
ylim([min(T_sim1) max(T_sim1)])
title('训练集预测值 vs. 训练集真实值')

figure
scatter(T_test, T_sim2, sz, c)
hold on
plot(xlim, ylim, '--k')
xlabel('测试集真实值');
ylabel('测试集预测值');
xlim([min(T_test) max(T_test)])
ylim([min(T_sim2) max(T_sim2)])
title('测试集预测值 vs. 测试集真实值')

⛄ 运行结果

cnn回归预测,cnn,回归,matlab,人工智能,神经网络

cnn回归预测,cnn,回归,matlab,人工智能,神经网络

cnn回归预测,cnn,回归,matlab,人工智能,神经网络

⛄ 参考文献

[1] 郝霖霖.基于混合数据输入的体脂率预测模型的青年男性体脂率预测方法:CN202110506558.7[P].CN202110506558.7[2023-07-15].

[2] 赵辉,杨赛,岳有军,等.基于小波分解-卷积神经网络和支持向量回归的短期负荷预测[J].科学技术与工程, 2021, 21(25):7.

[3] 江婧,张怀峰,皮德常.基于卷积神经网络的移动对象目的地预测[J].小型微型计算机系统, 2019, 40(12):7.DOI:CNKI:SUN:XXWX.0.2019-12-009.文章来源地址https://www.toymoban.com/news/detail-765750.html

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1.卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3.旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划
4.无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5.传感器部署优化、通信协议优化、路由优化、目标定位
6.信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号
7.生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化
8.微电网优化、无功优化、配电网重构、储能配置
9.元胞自动机交通流 人群疏散 病毒扩散 晶体生长

到了这里,关于【CNN回归预测】基于卷积神经网络的数据回归预测附matlab完整代码的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包