【Python&图像超分】Real-ESRGAN图像超分模型(超分辨率重建)详细安装和使用教程

这篇具有很好参考价值的文章主要介绍了【Python&图像超分】Real-ESRGAN图像超分模型(超分辨率重建)详细安装和使用教程。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1 前言

        图像超分是一种图像处理技术,旨在提高图像的分辨率,使其具有更高的清晰度和细节。这一技术通常用于图像重建、图像恢复、图像增强等领域,可以帮助我们更好地理解和利用图像信息。图像超分技术可以通过多种方法实现,包括插值算法、深度学习等。其中,深度学习的方法在近年来得到了广泛的关注和应用。基于深度学习的图像超分技术,可以利用深度神经网络学习图像的高频部分,从而提高了图像的分辨率和清晰度

        目前应用较多的应用场景是图像及视频分辨率提高,比如可以提高以往影视作品或图像的分辨率,提高视觉感官效果;或是解决视频经有损压缩后导致视频效果退化问题。今天给大家介绍一下腾讯ARC实验室发布的一个图像超分辨率模型Real-ESRGAN:项目开源地址,论文地址。

1.1 项目效果展示

real esrgan,Python深度学习,超分辨率重建,计算机视觉,人工智能,深度学习,图像处理

2 Python代码使用教程

2.1 依赖库安装

  • Python >= 3.7 (推荐使用Anaconda或Miniconda)
  • PyTorch >= 1.7
  • 这里比较推荐大家用离线本地安装
2.1.1 项目安装
git clone https://github.com/xinntao/Real-ESRGAN.git
cd Real-ESRGAN
2.1.2 安装依赖
# 安装 basicsr - https://github.com/xinntao/BasicSR
# 我们使用BasicSR来训练以及推断
pip install basicsr
# facexlib和gfpgan是用来增强人脸的
pip install facexlib
pip install gfpgan
pip install -r requirements.txt
python setup.py develop

2.2 模型介绍

        模型下载链接,里面有7个,有些我不知道是干啥用的,所以就没说。

  • realesrgan-x4plus(默认)
  • reaesrnet-x4plus
  • realesrgan-x4plus-anime(针对动漫插画图像优化,有更小的体积)
  • realesr-animevideov3 (针对动漫视频)

2.3 代码使用

        将下载好的模型,放在项目文件中的weights文件夹中,然后打开inference_realesrgan.py和inference_realesrgan_video.py这两个文件就运行就行了,一个是图片超分,一个是视频超分。我这里将代码已经全部注释了,自己可以看看很好理解。

        默认模型是realesrgan-x4plus,需要超分的图片/视频放在项目文件夹的inputs中,输出在results中。

import argparse
import cv2
import glob
import os
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.utils.download_util import load_file_from_url

from realesrgan import RealESRGANer
from realesrgan.archs.srvgg_arch import SRVGGNetCompact


def main():
    """Inference demo for Real-ESRGAN.
    """
    parser = argparse.ArgumentParser()  # 创建一个命令行解析器对象,用于解析命令行参数
    parser.add_argument('-i', '--input', type=str, default='inputs', help='Input image or folder')
    # 添加一个命令行参数 -i, --input,类型为字符串,默认值为 'inputs',用于指定输入图像或文件夹
    parser.add_argument(
        '-n',
        '--model_name',
        type=str,
        default='RealESRGAN_x4plus',
        help=('Model names: RealESRGAN_x4plus | RealESRNet_x4plus | RealESRGAN_x4plus_anime_6B | RealESRGAN_x2plus | '
              'realesr-animevideov3 | realesr-general-x4v3'))
    # 添加一个命令行参数 -n, --model_name,类型为字符串,默认值为 'RealESRGAN_x4plus',用于指定使用的模型名称
    parser.add_argument('-o', '--output', type=str, default='results', help='Output folder')
    # 添加一个命令行参数 -o, --output,类型为字符串,默认值为 'results',用于指定输出文件夹
    parser.add_argument(
        '-dn',
        '--denoise_strength',
        type=float,
        default=0.5,
        help=('Denoise strength. 0 for weak denoise (keep noise), 1 for strong denoise ability. '
              'Only used for the realesr-general-x4v3 model'))
    # 添加一个命令行参数 -dn, --denoise_strength,类型为浮点数,默认值为 0.5,用于指定去噪强度
    parser.add_argument('-s', '--outscale', type=float, default=4, help='The final upsampling scale of the image')
    # 添加一个命令行参数 -s, --outscale,类型为浮点数,默认值为 4,用于指定最终的放大倍数
    parser.add_argument(
        '--model_path', type=str, default=None, help='[Option] Model path. Usually, you do not need to specify it')
    # 添加一个命令行参数 --model_path,类型为字符串,默认值为 None,用于指定模型路径。通常不需要指定。
    parser.add_argument('--suffix', type=str, default='out', help='Suffix of the restored image')
    # 添加一个命令行参数 --suffix,类型为字符串,默认值为 'out',用于指定输出图像的后缀
    parser.add_argument('-t', '--tile', type=int, default=0, help='Tile size, 0 for no tile during testing')
    # 添加一个命令行参数 -t, --tile,类型为整数,默认值为 0,用于指定瓦片大小。0 表示测试时没有瓦片。
    parser.add_argument('--tile_pad', type=int, default=10, help='Tile padding')
    # 添加一个命令行参数 --tile_pad,类型为整数,默认值为 10,用于指定瓦片填充大小
    parser.add_argument('--pre_pad', type=int, default=0, help='Pre padding size at each border')
    # 添加一个命令行参数 --pre_pad,类型为整数,默认值为 0,用于指定每个边界的预填充大小
    parser.add_argument('--face_enhance', action='store_true', help='Use GFPGAN to enhance face')
    # 添加一个命令行参数 --face_enhance,动作是存储为 True,用于指定是否使用 GFPGAN 来增强人脸
    parser.add_argument(
        '--fp32', action='store_true', help='Use fp32 precision during inference. Default: fp16 (half precision).')
    # 添加一个命令行参数 --fp32,动作是存储为 True,用于指定推理期间是否使用 fp32 精度。默认情况下使用 fp16(半精度)
    parser.add_argument(
        '--alpha_upsampler',
        type=str,
        default='realesrgan',
        help='The upsampler for the alpha channels. Options: realesrgan | bicubic')
    # 添加一个命令行参数 --alpha_upsampler,类型为字符串,默认值为 'realesrgan',用于指定 alpha 通道的上采样器。选项:realesrgan | bicubic
    parser.add_argument(
        '--ext',
        type=str,
        default='auto',
        help='Image extension. Options: auto | jpg | png, auto means using the same extension as inputs')
    # 添加一个参数,参数名为'--ext',类型为字符串,默认值为auto,这个参数主要用于指定输入图像的扩展名。
    parser.add_argument(
        '-g', '--gpu-id', type=int, default=None, help='gpu device to use (default=None) can be 0,1,2 for multi-gpu')
    # 添加一个参数,参数名为'-g'或'--gpu-id',类型为整数,默认值为None。这个参数主要用于指定使用的GPU设备。
    args = parser.parse_args()
    # 解析命令行参数,生成一个命名空间args

    # determine models according to model names
    args.model_name = args.model_name.split('.')[0]
    # 根据传入的命令行参数--model-name来选择模型,这里假设模型名称和使用的模型之间的关系已经预设好。
    if args.model_name == 'RealESRGAN_x4plus':  # x4 RRDBNet model
        model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
        netscale = 4
        file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth']
    elif args.model_name == 'RealESRNet_x4plus':  # x4 RRDBNet model
        model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
        netscale = 4
        file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth']
    elif args.model_name == 'RealESRGAN_x4plus_anime_6B':  # x4 RRDBNet model with 6 blocks
        model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
        netscale = 4
        file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth']
    elif args.model_name == 'RealESRGAN_x2plus':  # x2 RRDBNet model
        model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
        netscale = 2
        file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth']
    elif args.model_name == 'realesr-animevideov3':  # x4 VGG-style model (XS size)
        model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu')
        netscale = 4
        file_url = ['https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth']
    elif args.model_name == 'realesr-general-x4v3':  # x4 VGG-style model (S size)
        model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
        netscale = 4
        file_url = [
            'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth',
            'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth'
        ]

    # determine model paths
    if args.model_path is not None:
        # 判断是否传入了模型路径,如果传入了则直接使用该路径,否则会结合模型名称生成一个默认的模型路径
        model_path = args.model_path
    else:
        model_path = os.path.join('weights', args.model_name + '.pth')
        if not os.path.isfile(model_path):
            ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
            for url in file_url:
                # model_path will be updated
                model_path = load_file_from_url(
                    url=url, model_dir=os.path.join(ROOT_DIR, 'weights'), progress=True, file_name=None)

    # use dni to control the denoise strength
    dni_weight = None
    # dni_weight 为 None 表示不使用 DNI
    # 如果使用了 DNI,dni_weight 的值会是一个列表,列表的两个元素分别代表 DNI 网络和原始模型的权重
    if args.model_name == 'realesr-general-x4v3' and args.denoise_strength != 1:
        wdn_model_path = model_path.replace('realesr-general-x4v3', 'realesr-general-wdn-x4v3')
        model_path = [model_path, wdn_model_path]
        dni_weight = [args.denoise_strength, 1 - args.denoise_strength]

    # restorer
    upsampler = RealESRGANer(
        scale=netscale,  # 放大倍率,即超分辨率的因子
        model_path=model_path,   # 预训练模型的路径
        dni_weight=dni_weight,  # DNI网络的权重,用于控制去噪强度(Denoising Network Integration)
        model=model,  # 输入模型,一般是降噪后的图像
        tile=args.tile,  # 分块大小,即将图像切割成多个小块进行超分辨率
        tile_pad=args.tile_pad,   # 块与块之间的填充大小
        pre_pad=args.pre_pad,   # 预处理时的填充大小
        half=not args.fp32,   # 是否使用半精度浮点数进行计算,若args.fp32为True则使用半精度,否则使用全精度
        gpu_id=args.gpu_id)  # GPU的ID,用于在多GPU环境下指定使用哪个GPU进行计算

    if args.face_enhance:  # Use GFPGAN for face enhancement,如果需要使用 GFPGAN 进行人脸增强
        from gfpgan import GFPGANer  # 导入 GFPGAN 人脸增强器的类
        face_enhancer = GFPGANer(
            model_path='https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth',
            upscale=args.outscale,  # 放大倍率,即超分辨率的因子
            arch='clean',   # GFPGAN的架构,这里选择的是'clean'版本
            channel_multiplier=2,  # 通道的乘数,用于扩大模型的通道数
            bg_upsampler=upsampler)  # 使用之前创建的RealESRGAN超分辨率增强器作为背景超分辨率增强器
    # args.output = r"G:\Anaconda\ProjectYOLO\yolov5-7.0\Real-ESRGAN-master\1/"
    os.makedirs(args.output, exist_ok=True)  # 创建输出目录,如果已存在则不报错,继续执行后续代码

    if os.path.isfile(args.input):
        # 判断输入路径是否为一个文件
        paths = [args.input]
        # 如果是文件,直接将其路径加入到paths列表中
    else:
        paths = sorted(glob.glob(os.path.join(args.input, '*')))
        # 如果输入路径不是一个文件,那么它应该是一个包含图像的文件夹
        # 使用glob库获取输入路径下所有的文件路径,并将它们按字母顺序排序后加入到paths列表中
    for idx, path in enumerate(paths):
        # 遍历所有的文件路径
        imgname, extension = os.path.splitext(os.path.basename(path))  # 获取文件名和扩展名
        print('Testing', idx, imgname)  # 打印正在处理的文件信息
        img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
        # 使用OpenCV读取图片,参数cv2.IMREAD_UNCHANGED表示以最接近原始图像的颜色空间读取图像
        if len(img.shape) == 3 and img.shape[2] == 4:
            # 判断图像的维度,如果维度为3且第三个维度的大小为4,说明图像是RGBA格式的,否则不进行特殊处理
            img_mode = 'RGBA'  # 记录图片模式为RGBA
        else:
            img_mode = None  # 否则不记录图片模式
        try:
            if args.face_enhance:
                # 如果需要人脸增强,使用face_enhancer进行人脸增强处理,参数包括输入图像、是否进行人脸对齐、是否只处理中心的人脸部分以及是否将处理后的人脸粘贴回原图
                _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
            else:
                # 否则,使用upsampler进行图像超分辨率增强,参数包括输入图像、放大倍数以及是否使用GPU加速
                output, _ = upsampler.enhance(img, outscale=args.outscale)
        except RuntimeError as error:
            # 如果在处理过程中出现RuntimeError异常,打印错误信息,并给出可能的解决方案
            print('Error', error)
            print('If you encounter CUDA out of memory, try to set --tile with a smaller number.')
        else:
            # 如果没有出现异常,执行else分支的代码
            # 如果用户没有指定输出文件的扩展名,则自动从输入文件的扩展名中获取输出文件的扩展名;否则使用用户指定的扩展名
            if args.ext == 'auto':
                extension = extension[1:]
            else:
                extension = args.ext
            if img_mode == 'RGBA':  # RGBA images should be saved in png format
                # 如果图片的模式是RGBA,说明图片是RGBA格式的,需要将其保存为png格式的图片
                extension = 'png'
            if args.suffix == '':
                # 根据用户指定的后缀名构造保存路径
                save_path = os.path.join(args.output, f'{imgname}.{extension}')
            else:
                save_path = os.path.join(args.output, f'{imgname}_{args.suffix}.{extension}')
                # 使用OpenCV将处理后的图片保存到指定路径下,参数指定保存的文件格式和压缩质量等选项(这里没有指定压缩质量)
            cv2.imwrite(save_path, output)
            # 保存处理后的图片到指定路径下


if __name__ == '__main__':
    main()

2.4 命令行使用

2.4.1 参数
Usage: python inference_realesrgan.py -n RealESRGAN_x4plus -i infile -o outfile [options]...

A common command: python inference_realesrgan.py -n RealESRGAN_x4plus -i infile --outscale 3.5 --face_enhance

  -h                   show this help
  -i --input           Input image or folder. Default: inputs
  -o --output          Output folder. Default: results
  -n --model_name      Model name. Default: RealESRGAN_x4plus
  -s, --outscale       The final upsampling scale of the image. Default: 4
  --suffix             Suffix of the restored image. Default: out
  -t, --tile           Tile size, 0 for no tile during testing. Default: 0
  --face_enhance       Whether to use GFPGAN to enhance face. Default: False
  --fp32               Whether to use half precision during inference. Default: False
  --ext                Image extension. Options: auto | jpg | png, auto means using the same extension as inputs. Default: auto
2.4.2 参数使用
python inference_realesrgan.py -n RealESRGAN_x4plus_anime_6B -i inputs

3 桌面端轻应用

        作者提供了打包好的桌面端exe程序,无需配置PyTorch等依赖,Windows下载地址。

        使用方法也很简单,图片放在realesrgan-ncnn-vulkan.exe同目录下,然后使用cmd命令行跳转至这个目录,输入下面的命令(自己修改)。

./realesrgan-ncnn-vulkan.exe -i 输入图像.jpg -o 输出图像.png -n 模型名字

        注意:可执行文件并没有支持 python 脚本 inference_realesrgan.py 中所有的功能,比如 outscale 选项) .

Usage: realesrgan-ncnn-vulkan.exe -i infile -o outfile [options]...

  -h                   show this help
  -i input-path        input image path (jpg/png/webp) or directory
  -o output-path       output image path (jpg/png/webp) or directory
  -s scale             upscale ratio (can be 2, 3, 4. default=4)
  -t tile-size         tile size (>=32/0=auto, default=0) can be 0,0,0 for multi-gpu
  -m model-path        folder path to the pre-trained models. default=models
  -n model-name        model name (default=realesr-animevideov3, can be realesr-animevideov3 | realesrgan-x4plus | realesrgan-x4plus-anime | realesrnet-x4plus)
  -g gpu-id            gpu device to use (default=auto) can be 0,1,2 for multi-gpu
  -j load:proc:save    thread count for load/proc/save (default=1:2:2) can be 1:2,2,2:2 for multi-gpu
  -x                   enable tta mode"
  -f format            output image format (jpg/png/webp, default=ext/png)
  -v                   verbose output

        由于这些exe文件会把图像分成几个板块,然后来分别进行处理,再合成导出,输出的图像可能会有一点割裂感(而且可能跟PyTorch的输出不太一样)。

4 总结

        这个开源项目总体来说精度是不错的,图像的分辨率确实有明显的提升,可以将模糊的图片还原出更多的细节,但有时候的效果比较抽象。作者在项目中说会持续更新(PS:作者的重心好像是放在动漫图片超分方面),希望会越来越好。最后分享一下腾讯ARC的Web端使用demo。文章来源地址https://www.toymoban.com/news/detail-766381.html

到了这里,关于【Python&图像超分】Real-ESRGAN图像超分模型(超分辨率重建)详细安装和使用教程的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Real-ESRGAN超分辨网络

    《Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data》 文章目录 一、Real-ESRGAN主要介绍 二、Real-ESRGAN主要内容 1、摘要 2、论文方法 3、方法详细介绍 · Blur · Noise · Resize(Downsampling) · JPEG compression · High-order Degradation Model · Ringing and overshoot artifacts  · U-Net结构判别

    2024年03月16日
    浏览(39)
  • 来自腾讯AI实验室的Real-ESRGAN将模糊老照片和视频修复成高清晰(一些错误处理)

            Real-ESRGAN:Enhanced Super-Resolution GAN: 增强的超分辨率的对抗生成网络 ,对于GAN相信大家都比较熟悉,前有阿尔法狗,现有很多GAN的延伸版本,StyleGAN1~3系列以及DragGAN对于图片的生成和编辑,出来的效果都很惊艳。         一些旧照片,时代比较久远了,那个时候

    2024年02月08日
    浏览(71)
  • AIGC图像分辨率太低?快来试试像素感知扩散超分模型,你想要的细节都在这里

           最新 FaceChain支持多人合照写真、上百种单人写真风格,项目信息汇总:ModelScope 魔搭社区 。        github开源直达(觉得有趣的点个star哈。):GitHub - modelscope/facechain: FaceChain is a deep-learning toolchain for generating your Digital-Twin. 摘要 阿里巴巴最新自研的像素感知扩散

    2024年02月08日
    浏览(39)
  • SRGAN图像超分重建算法Python实现(含数据集代码)

    摘要:本文介绍深度学习的SRGAN图像超分重建算法,使用 P y t h o n 以及 P y t o r c h 框架实现,包含完整训练、测试代码,以及训练数据集文件。博文介绍图像超分算法的原理,包括生成对抗网络和SRGAN模型原理和实现的代码,同时结合具体内容进行解释说明,完整代码资源文

    2024年02月12日
    浏览(44)
  • CVPR 2023 | 图像超分,结合扩散模型/GAN/部署优化,low-level任务,视觉AIGC系列

    基于Transformer的方法在低级别视觉任务中,如图像超分辨率,表现出了令人印象深刻的性能。Transformer的潜力在现有网络中仍未得到充分发挥。为了激活更多的输入像素以实现更好的重建,提出了一种新的混合注意力Transformer(HAT)。它同时结合了通道注意力和基于窗口的自注意

    2024年02月11日
    浏览(69)
  • 使用OpenCV实现图像超分辨率(Python)

    超分辨率技术指的是将低分辨率的图像或视频通过算法转换成高分辨率的图像或视频的操作。 超分辨率可以分为两种:单图像超分辨率(Single Image Super Resolution,SISR)和视频超分辨率(Video Super Resolution,VSR)。 OpenCV中的超分辨率功能被集中在了contrib模块中,因此我们首先需

    2024年02月13日
    浏览(48)
  • Python 不同分辨率图像峰值信噪比[PSNR]

    PNNR:全称为“Peak Signal-to-Noise Ratio”,中文直译为峰值信噪比 前言 一、定义 二、Python代码 1.自定义 2.Tensorflow 总结 峰值信噪比是一种衡量图像质量的指标,描述的是最大值信号与背景噪音之间的关系。 一般来说,PSNR高于40dB说明图像质量极好(即非常接近原始图像);在

    2024年02月01日
    浏览(53)
  • 图像超分综述:超长文一网打尽图像超分的前世今生 (附核心代码)

    声明 : (1) 本文由博主 Minnie_Vautrin 原创整理,经本人大修后上传。 (2) 本文参考文献与资源众多,由于部分已经无法溯源,若有侵权请联系删改。 提高图像的分辨率; 丰富图像的细节纹理。 智能显示领域 :普通摄像头拍摄的图像分辨率一般偏低,不能满足高分辨率的视觉要

    2024年02月03日
    浏览(48)
  • python求不同分辨率图像的峰值信噪比,一文搞懂

    可以使用 Python 的 NumPy 和 OpenCV 库来实现这个任务。提前准备一张图片作为素材。 峰值信噪比(Peak Signal to Noise Ratio,PSNR)是衡量图像质量的常用指标,它表示图像中信号和噪声的比值。通常,较高的 PSNR 值表示图像质量较高。 PSNR 的公式如下: 其中, MAX 是图像的最大亮度

    2024年02月05日
    浏览(48)
  • 应用高分辨率 GAN 对扰动文档图像去扭曲的深度Python实践

    1. 引言 随着技术的不断发展,图像处理在各种场景中的应用也变得越来越广泛。高分辨率 GAN (Generative Adversarial Network) 是近年来图像处理领域的热点技术,它能够生成极高分辨率的图像,与此同时,它也可以用于各种修复和增强任务。本文将专注于使用高分辨率 GAN 对扰动文

    2024年02月12日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包