Activemq存储KahaDb详解

这篇具有很好参考价值的文章主要介绍了Activemq存储KahaDb详解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

引言

ActiveMQ在不提供持久化的情况下,数据保存在内存中,一旦应用崩溃或者重启之后,数据都将会丢失,这显然在大部分情况下是我们所不希望的。对此ActiveMQ提供了两种持久化方式以供选择。

kahaDB

kahaDB是一个基于文件,支持事务的、可靠,高性能,可扩展的消息存储器,目前是activeMQ默认的持久化方式,配置也十分简单

<persistenceAdapter>
	<kahaDB directory="${activemq.data}/kahadb"/>
</persistenceAdapter>

以上配置是将存储目录设置为${activemq.data}/kahadb

存储目录下文件说明:

  • db.data:索引文件,本质上是BTree的实现,存储到了db-*.log消息文件的索引

  • db.redo:用来进行数据恢复的redo文件

  • db-*.log:存储消息内容的文件,包括消息元数据、订阅关系、事务等数据。
    lock:表示已启动一个实例。

kahaDB配置支持的参数:

参数 默认值 说明
indexWriteBatchSize 1000 当缓存中更新的索引到达1000时,将数据同步到磁盘中,数据是批量同步的。
indexCacheSize 10000 在内存中最多分配多个页面来缓存索引。缓存的索引越多,命中的概率就越大,检索的效率就越高
journalMaxFileLength 33554432 默认值32MB,配置单个消息文件的大小,超过一定大小以后重新创建一个新的文件进行保存。
enableJournalDiskSyncs true 表示采用同步写磁盘,即消息先存储到磁盘后再向Producer返回ACK
cleanupInterval 30000 当消息被消息者成功消费之后,Broker就可以将消息删除的时间间隔。
checkpointInterval 5000 每隔5s将内存中的index缓存更新到磁盘文件中。

底层实现

Activemq存储KahaDb详解,Java中间件,java-activemq,activemq,java

从上图中可以看出:图中各个部分与KahaDB配置的存储目录下的文件是一 一对应的。

①在内存(cache)中的那部分B-Tree是Metadata Cache

通过将索引缓存到内存中,可以加快查询的速度(quick retrival of message data)。但是需要定时将 Metadata CacheMetadata Store同步。

**这个同步过程就称为:check point。**由checkpointInterval选项 决定每隔多久时间进行一次checkpoint操作。

BTree Indexes则是保存在磁盘上的,称为Metadata Store,它对应于文件db.data,它就是对Data Logs以B树的形式 索引。有了它,Broker(消息服务器)可以快速地重启恢复,因为它是消息的索引,根据它就能恢复出每条消息的location

如果Metadata Store被损坏,则只能扫描整个Data Logs来重建B树了,这个过程是很复杂且缓慢的。

Data Logs则对应于文件 db-*.log,默认是32MB

Data Logs以日志形式存储消息,它是生产者生产的数据的真正载体。

The data logs are used to store data in the form of journals, 
where events of all kinds—messages, acknowledgments, subscriptions, subscription cancellations, transaction boundaries, etc.
---are stored in a rolling log

Redo Log则对应于文件 db.redo

redo log的原理用到了“Double Write”。关于“Double Write”可参考

简要记录下自己的理解:因为磁盘的页大小与操作系统的页大小不一样,磁盘的页大小一般是16KB,而OS的页大小是4KB。而数据写入磁盘是以磁盘页大小为单位进行的,即一次写一个磁盘页大小,这就需要4个OS的页大小(4*4=16)。如果在写入过程中出现故障(突然断电)就会导致只写入了一部分数据(partial page write)

而采用了“Double Write”之后,将数据写入磁盘时,先写到一个Recovery Buffer中,然后再写到真正的目的文件中。在ActiveMQ的源码PageFile.java中有相应的实现。

扩展知识:Linux中的日志文件系统:因为Linux的 ext文件系统采用索引节点来存储文件的元数据,每次数据写入磁盘之后,需要更新索引节点表。而写入磁盘与更新索引节点表并不是“原子操作”,比如,在数据写入磁盘后,系统发生故障,之前写入的数据就再也找不到了。

因此,日志文件系统给Linux系统增加了一层安全性:数据写入存储设备之前,先将数据(或者只将索引节点信息写日志)写入到临时文件中,该临时文件称日志。如果在数据写入时发生故障,还可以通过日志来进行一定的恢复。

附录

参考:

https://www.cnblogs.com/hapjin/p/5674257.html

https://www.iteye.com/blog/netcomm-1455086文章来源地址https://www.toymoban.com/news/detail-766510.html

到了这里,关于Activemq存储KahaDb详解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • java中几种对象存储(文件存储)中间件的介绍

    一、前言 在博主得到系统中使用的对象存储主要有OSS(阿里云的对象存储) COS(腾讯云的对象存储)OBS(华为云的对象存储)还有就是MinIO 这些玩意。其实这种东西大差不差,几乎实现方式都是一样,存储模式大同小异。下面介绍几种存储模式在springBoot中的使用。 二、阿里

    2024年03月15日
    浏览(45)
  • ActiveMQ、RabbitMQ、Kafka、RocketMQ消息中间件技术选型

    消息中间件是分布式系统中重要的组件之一,用于实现异步通信、解耦系统、提高系统可靠性和扩展性。在做消息中间件技术选型时,需要考虑多个因素,包括可靠性、性能、可扩展性、功能丰富性、社区支持和成本等。本文将五种流行的消息中间件技术:ActiveMQ、RabbitMQ、

    2024年02月11日
    浏览(47)
  • SpringBoot整合消息中间件(ActiveMQ,RabbitMQ,RocketMQ,Kafka)

    消息的发送方:生产者 消息的接收方:消费者 同步消息:发送方发送消息到接收方,接收方有所回应后才能够进行下一次的消息发送 异步消息:不需要接收方回应就可以进行下一步的发送 什么是消息队列? 当此时有很多个用户同时访问服务器,需要服务器进行操作,但此

    2024年04月27日
    浏览(48)
  • 消息中间件(MQ)对比:RabbitMQ、Kafka、ActiveMQ 和 RocketMQ

    前言 在构建分布式系统时,选择适合的消息中间件是至关重要的决策。RabbitMQ、Kafka、ActiveMQ 和 RocketMQ 是当前流行的消息中间件之一,它们各自具有独特的特点和适用场景。本文将对这四种消息中间件进行综合比较,帮助您在项目中作出明智的选择。 1. RabbitMQ 特点: 消息模

    2024年02月20日
    浏览(49)
  • 消息中间件(RocketMQ、RabbitMQ、ActiveMQ、Redis、kafka、ZeroMQ)以及之间的区别

    目录 一、什么是消息中间件 二、消息中间件的组成 1、Broker 2、Producer 3、Consumer 4、Topic 5、Queue 6、Message 三、消息中间件通信模式 1、点对点(kafka不支持这种模式)  2、发布/订阅  四、消息中间件的作用 1、系统解耦 2、提高系统响应时间 3、为大数据处理架构提供服务 五、

    2024年01月25日
    浏览(49)
  • 想学高并发技能,这些常用的消息中间件( RabbitMQ、Kafka、ActiveMQ、Redis、NATS )你要必知

    对于全栈或者后端工程师来说,解决高并发是一个必备的技能,一说到高并发时,我们第一反应是分布式系统,那么,消息中间件( RabbitMQ 、 Kafka 、 ActiveMQ 、 Redis 、 NATS 等)的出现是为了解决分布式系统中的消息传递和异步通信的问题,以及提供可靠的消息传递机制。它们

    2024年04月15日
    浏览(52)
  • 【分布式技术专题】「OSS中间件系列」Minio的文件服务的存储模型及整合Java客户端访问的实战指南

    Minio的元数据 数据存储 MinIO对象存储系统没有元数据数据库,所有的操作都是对象级别的粒度的,这种做法的优势是: 个别对象的失效,不会溢出为更大级别的系统失效。 便于实现\\\"强一致性\\\"这个特性。此特性对于机器学习与大数据处理非常重要。 数据管理 元数据与数据一起

    2024年02月11日
    浏览(56)
  • 中间件存储设计 - 数组与链表

    中间件主要包括如下三方面的基础:数据结构、JUC 和 Netty,接下来,我们先讲数据结构。 数据结构主要解决的是数据的存储方式问题,是程序设计的基座。 按照重要性和复杂程度,我选取了数组和链表、键值对 (HashMap)、红黑树、LinkedHashMap 和 PriorityQueue 几种数据结构重点解

    2024年01月23日
    浏览(45)
  • 消息中间件RabbitMQ详解

    消息中间件利用高效可靠的消息传递机制进行平台无关的数据交流,并基于数据通信来进行分布式系统的集成。通过提供消息传递和消息排队模型,它可以在分布式环境下扩展进程间的通信。 消息中间件适用于需要可靠的数据传送的分布式环境。采用消息中间件机制的系统中

    2024年02月16日
    浏览(77)
  • 消息中间件面试题详解

      延迟队列:进入队列的消息会被延迟消费的队列 场景:超时订单,限时优惠,定时发布 延迟队列 = 死信交换机 + TTL(生存时间)     kafka高可用机制  kafka数据清理机制    kafka高性能设计

    2024年02月12日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包