评价机器学习模型的思路

这篇具有很好参考价值的文章主要介绍了评价机器学习模型的思路。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

这个标题不够严谨,不同业务领域下的模型,没有可比性。因此,应当增加一定的限定条件,才能对机器学习的模型进行比较。

当前可行的限定条件,如下:

  • 模型
    • 模型结构
    • 参数的数量
  • 训练算法
  • 训练时长
  • 数据
    • 训练数据集
    • 验证数据集
    • 数据质量
  • 基础平台
    • 训练平台
      • 硬件
      • 软件
    • 运行平台
      • 硬件
      • 软件

在给定上述条件时,可观察的指标有:

  • 模型自身的特征
    • 模型占用的硬盘空间
    • 模型占用的内存空间
  • 资源类指标
    • CPU使用量
    • 内存使用量
    • GPU使用量
    • GPU内存使用量
  • 模型的性能
    • 准确性,和业务领域、模型强相关。
    • 时间开销,这里主要指使用模型执行推断操作时的时间开销,不包括推断框架自身运行时产生的时间开销。

设计训练试验时,梳理并逐步完善对模型性能存在影响在因素,在试验过程中,逐步积累相关因素与模型性能的相关性。
比如可行的操作方法,即一个批次的试验只变化其中一个因子,而保持其它因子不变,保证相同批次内的试验具备可比性。
这在一定程度上可以用于分析限定条件和观察指标之间的相关性,指导后续的工作。
考虑到机器学习方法的复杂性,数据量和质量等等因素,前述方法在实际操作中,存在相当的变数,可能需要投入大量的人力、设备、时间来反复验证。文章来源地址https://www.toymoban.com/news/detail-766793.html

到了这里,关于评价机器学习模型的思路的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【机器学习】07. 决策树模型DecisionTreeClassifier(代码注释,思路推导)

    『机器学习』分享机器学习课程学习笔记,逐步讲述从简单的线性回归、逻辑回归到 ▪ 决策树算法 ▪ 朴素贝叶斯算法 ▪ 支持向量机算法 ▪ 随机森林算法 ▪ 人工神经网络算法 等算法的内容。 欢迎关注 『机器学习』 系列,持续更新中 欢迎关注 『机器学习』 系列,持续

    2024年02月05日
    浏览(81)
  • 机器学习笔记 - 学习图像生成模型在医疗行业用例的思路

            合成图像生成是使用算法或模拟来替换真实世界数据创建新图像的过程。         与数据隐私、有限的数据可用性、数据标签、无效的数据治理、高成本以及对大量数据的需求相关的挑战正在推动使用合成数据来满足各行各业对人工智能解决方案的高需求。

    2024年02月09日
    浏览(53)
  • GIS在地质灾害危险性评估与灾后重建中的实践技术应用及python机器学习灾害易发性评价模型建立与优化

    地质灾害是指全球地壳自然地质演化过程中,由于地球内动力、外动力或者人为地质动力作用下导致的自然地质和人类的自然灾害突发事件。由于降水、地震等自然作用下,地质灾害在世界范围内频繁发生。我国除滑坡灾害外,还包括崩塌、泥石流、地面沉降等各种地质灾害

    2023年04月11日
    浏览(44)
  • 【2023B题】人工智能对大学生学习影响的评价(思路、代码)

    目录 💥1 概述 📚2 Matlab代码实现 🎉3 参考文献 🌈4 运行结果 人工智能简称AI,最初由麦卡锡、明斯基等科学家于1956年在美国达特茅斯学院开会研讨时提出。 2016年,人工智能AlphaGo 4:1战胜韩国围棋高手李世石,期后波士顿动力公司的人形机器人Atlas也展示了高超的感知和控

    2024年02月06日
    浏览(51)
  • 【MATLAB第56期】#源码分享 | 基于MATLAB的机器学习算法单输入多输出分类预测模型思路(回归改分类)

    针对单输入多输出分类预测,可采用回归的方式进行预测。 本文采用BP神经网络进行演示。 数据为1输入,5输出,总共482个样本。 输出分为五个指标,每个指标共4个评分维度,即【0 10 20 30】 保持样本均匀多样性,可将数据打乱。 若不需要打乱,上面代码改成: 训练样本数

    2024年02月17日
    浏览(34)
  • 【无标题】机器学习常识阅读笔记

    原博客链接:https://blog.csdn.net/minfanphd/category_12328466.html 总共24篇博客内容,最近两天集种看了一遍。小有收获,了解了一些机器学习的概念。大部分概念原来听过,但是有些概念还是第一次见。比如U-Net,多示例学习等。 关于第19篇的矩阵分解:原来也接触过矩阵分解,但是

    2024年02月15日
    浏览(42)
  • 机器学习基础算法--回归类型和评价分析

    目录 1.数据归一化处理 2.数据标准化处理 3.Lasso回归模型 4.岭回归模型 5.评价指标计算       MSE= i=1 n ( Y i - Y ^ ) 2 n RMES= i=1 n ( Y i - Y ^ ) 2 n MAE= i=1 n | Y i - Y ^ | n R 2 =1- i=1 n ( Y ^ - Y i ) 2 i=1 n ( Y ¯ - Y i )2

    2024年02月09日
    浏览(38)
  • 机器学习算法基础--聚类问题的评价指标

    2.1.兰德系数(RI)计算方法   首先我们定义两两配对变量a和b:   a:数据集的样本对既属于相同簇C也属于相同簇K的个数   b:数据集的样本对不属于相同簇C也不属于相同簇K的个数   比如对于如下的真实簇和预测簇向量:     真实簇向量:[ 0, 0, 0, 1, 1, 1 ]     

    2024年02月07日
    浏览(35)
  • 机器学习系列(二)——评价指标Precision和Recall

    Precision 和 Recall 是常考的知识点,就其区别做一个详细总结 1. Precision  中文翻译 “精确率”,“查准率”。 “查准率”这个名字更能反应其特性,就是 该指标关注准确性。  计算公式如下: 这里TP,FP的概念来自统计学中的混淆矩阵,TP指 “预测为正(Positive), 预测正确(

    2024年02月16日
    浏览(45)
  • 大数据毕设项目 - 深度学习 机器学习 酒店评价情感分析算法实现

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月19日
    浏览(37)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包