大数据机器学习-梯度下降:从技术到实战的全面指南

这篇具有很好参考价值的文章主要介绍了大数据机器学习-梯度下降:从技术到实战的全面指南。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

大数据机器学习-梯度下降:从技术到实战的全面指南

本文全面深入地探讨了梯度下降及其变体——批量梯度下降、随机梯度下降和小批量梯度下降的原理和应用。通过数学表达式和基于PyTorch的代码示例,本文旨在为读者提供一种直观且实用的视角,以理解这些优化算法的工作原理和应用场景。

大数据机器学习-梯度下降:从技术到实战的全面指南,机器学习与深度学习,大数据人工智能,自然语言处理,大数据,机器学习,人工智能,算法,深度学习,ai,pytorch

一、简介

梯度下降(Gradient Descent)是一种在机器学习和深度学习中广泛应用的优化算法。该算法的核心思想非常直观:找到一个函数的局部最小值(或最大值)通过不断地沿着该函数的梯度(gradient)方向更新参数。

什么是梯度下降?

简单地说,梯度下降是一个用于找到函数最小值的迭代算法。在机器学习中,这个“函数”通常是损失函数(Loss Function),该函数衡量模型预测与实际标签之间的误差。通过最小化这个损失函数,模型可以“学习”到从输入数据到输出标签之间的映射关系。

为什么梯度下降重要?

  1. 广泛应用:从简单的线性回归到复杂的深度神经网络,梯度下降都发挥着至关重要的作用。
  2. 解决不可解析问题:对于很多复杂的问题,我们往往无法找到解析解(analytical solution),而梯度下降提供了一种有效的数值方法。
  3. 扩展性:梯度下降算法可以很好地适应大规模数据集和高维参数空间。
  4. 灵活性与多样性:梯度下降有多种变体,如批量梯度下降(Batch Gradient Descent)、随机梯度下降(Stochastic Gradient Descent)和小批量梯度下降(Mini-batch Gradient Descent),各自有其优点和适用场景。

二、梯度下降的数学原理

大数据机器学习-梯度下降:从技术到实战的全面指南,机器学习与深度学习,大数据人工智能,自然语言处理,大数据,机器学习,人工智能,算法,深度学习,ai,pytorch

在深入研究梯度下降的各种实现之前,了解其数学背景是非常有用的。这有助于更全面地理解算法的工作原理和如何选择合适的算法变体。

代价函数(Cost Function)

在机器学习中,代价函数(也称为损失函数,Loss Function)是一个用于衡量模型预测与实际标签(或目标)之间差异的函数。通常用 ( J(\theta) ) 来表示,其中 ( \theta ) 是模型的参数。

大数据机器学习-梯度下降:从技术到实战的全面指南,机器学习与深度学习,大数据人工智能,自然语言处理,大数据,机器学习,人工智能,算法,深度学习,ai,pytorch

梯度(Gradient)

大数据机器学习-梯度下降:从技术到实战的全面指南,机器学习与深度学习,大数据人工智能,自然语言处理,大数据,机器学习,人工智能,算法,深度学习,ai,pytorch

更新规则

大数据机器学习-梯度下降:从技术到实战的全面指南,机器学习与深度学习,大数据人工智能,自然语言处理,大数据,机器学习,人工智能,算法,深度学习,ai,pytorch

代码示例:基础的梯度下降更新规则

import numpy as np

def gradient_descent_update(theta, grad, alpha):
    """
    Perform a single gradient descent update.
    
    Parameters:
    theta (ndarray): Current parameter values.
    grad (ndarray): Gradient of the cost function at current parameters.
    alpha (float): Learning rate.
    
    Returns:
    ndarray: Updated parameter values.
    """
    return theta - alpha * grad

# Initialize parameters
theta = np.array([1.0, 2.0])
# Hypothetical gradient (for demonstration)
grad = np.array([0.5, 1.0])
# Learning rate
alpha = 0.01

# Perform a single update
theta_new = gradient_descent_update(theta, grad, alpha)
print("Updated theta:", theta_new)

输出:

Updated theta: [0.995 1.99 ]

在接下来的部分,我们将探讨梯度下降的几种不同变体,包括批量梯度下降、随机梯度下降和小批量梯度下降,以及一些高级的优化技巧。通过这些内容,你将能更全面地理解梯度下降的应用和局限性。


三、批量梯度下降(Batch Gradient Descent)

大数据机器学习-梯度下降:从技术到实战的全面指南,机器学习与深度学习,大数据人工智能,自然语言处理,大数据,机器学习,人工智能,算法,深度学习,ai,pytorch

批量梯度下降(Batch Gradient Descent)是梯度下降算法的一种基础形式。在这种方法中,我们使用整个数据集来计算梯度,并更新模型参数。

基础算法

批量梯度下降的基础算法可以概括为以下几个步骤:

大数据机器学习-梯度下降:从技术到实战的全面指南,机器学习与深度学习,大数据人工智能,自然语言处理,大数据,机器学习,人工智能,算法,深度学习,ai,pytorch

代码示例

下面的Python代码使用PyTorch库演示了批量梯度下降的基础实现。

import torch

# Hypothetical data (features and labels)
X = torch.tensor([[1.0, 2.0], [2.0, 3.0], [3.0, 4.0]], requires_grad=True)
y = torch.tensor([[1.0], [2.0], [3.0]])

# Initialize parameters
theta = torch.tensor([[0.0], [0.0]], requires_grad=True)

# Learning rate
alpha = 0.01

# Number of iterations
n_iter = 1000

# Cost function: Mean Squared Error
def cost_function(X, y, theta):
    m = len(y)
    predictions = X @ theta
    return (1 / (2 * m)) * torch.sum((predictions - y) ** 2)

# Gradient Descent
for i in range(n_iter):
    J = cost_function(X, y, theta)
    J.backward()
    with torch.no_grad():
        theta -= alpha * theta.grad
    theta.grad.zero_()

print("Optimized theta:", theta)

输出:

Optimized theta: tensor([[0.5780],
        [0.7721]], requires_grad=True)

批量梯度下降的主要优点是它的稳定性和准确性,但缺点是当数据集非常大时,计算整体梯度可能非常耗时。接下来的章节中,我们将探索一些用于解决这一问题的变体和优化方法。


四、随机梯度下降(Stochastic Gradient Descent)

大数据机器学习-梯度下降:从技术到实战的全面指南,机器学习与深度学习,大数据人工智能,自然语言处理,大数据,机器学习,人工智能,算法,深度学习,ai,pytorch

随机梯度下降(Stochastic Gradient Descent,简称SGD)是梯度下降的一种变体,主要用于解决批量梯度下降在大数据集上的计算瓶颈问题。与批量梯度下降使用整个数据集计算梯度不同,SGD每次只使用一个随机选择的样本来进行梯度计算和参数更新。

基础算法

随机梯度下降的基本步骤如下:

大数据机器学习-梯度下降:从技术到实战的全面指南,机器学习与深度学习,大数据人工智能,自然语言处理,大数据,机器学习,人工智能,算法,深度学习,ai,pytorch

代码示例

下面的Python代码使用PyTorch库演示了SGD的基础实现。

import torch
import random

# Hypothetical data (features and labels)
X = torch.tensor([[1.0, 2.0], [2.0, 3.0], [3.0, 4.0]], requires_grad=True)
y = torch.tensor([[1.0], [2.0], [3.0]])

# Initialize parameters
theta = torch.tensor([[0.0], [0.0]], requires_grad=True)

# Learning rate
alpha = 0.01

# Number of iterations
n_iter = 1000

# Stochastic Gradient Descent
for i in range(n_iter):
    # Randomly sample a data point
    idx = random.randint(0, len(y) - 1)
    x_i = X[idx]
    y_i = y[idx]

    # Compute cost for the sampled point
    J = (1 / 2) * torch.sum((x_i @ theta - y_i) ** 2)
    
    # Compute gradient
    J.backward()

    # Update parameters
    with torch.no_grad():
        theta -= alpha * theta.grad

    # Reset gradients
    theta.grad.zero_()

print("Optimized theta:", theta)

输出:

Optimized theta: tensor([[0.5931],
        [0.7819]], requires_grad=True)

优缺点

SGD虽然解决了批量梯度下降在大数据集上的计算问题,但因为每次只使用一个样本来更新模型,所以其路径通常比较“嘈杂”或“不稳定”。这既是优点也是缺点:不稳定性可能帮助算法跳出局部最优解,但也可能使得收敛速度减慢。

在接下来的部分,我们将介绍一种折衷方案——小批量梯度下降,它试图结合批量梯度下降和随机梯度下降的优点。


五、小批量梯度下降(Mini-batch Gradient Descent)

大数据机器学习-梯度下降:从技术到实战的全面指南,机器学习与深度学习,大数据人工智能,自然语言处理,大数据,机器学习,人工智能,算法,深度学习,ai,pytorch

小批量梯度下降(Mini-batch Gradient Descent)是批量梯度下降和随机梯度下降(SGD)之间的一种折衷方法。在这种方法中,我们不是使用整个数据集,也不是使用单个样本,而是使用一个小批量(mini-batch)的样本来进行梯度的计算和参数更新。

基础算法

小批量梯度下降的基本算法步骤如下:

大数据机器学习-梯度下降:从技术到实战的全面指南,机器学习与深度学习,大数据人工智能,自然语言处理,大数据,机器学习,人工智能,算法,深度学习,ai,pytorch

代码示例

下面的Python代码使用PyTorch库演示了小批量梯度下降的基础实现。

import torch
from torch.utils.data import DataLoader, TensorDataset

# Hypothetical data (features and labels)
X = torch.tensor([[1.0, 2.0], [2.0, 3.0], [3.0, 4.0], [4.0, 5.0]], requires_grad=True)
y = torch.tensor([[1.0], [2.0], [3.0], [4.0]])

# Initialize parameters
theta = torch.tensor([[0.0], [0.0]], requires_grad=True)

# Learning rate and batch size
alpha = 0.01
batch_size = 2

# Prepare DataLoader
dataset = TensorDataset(X, y)
data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

# Mini-batch Gradient Descent
for epoch in range(100):
    for X_batch, y_batch in data_loader:
        J = (1 / (2 * batch_size)) * torch.sum((X_batch @ theta - y_batch) ** 2)
        J.backward()
        with torch.no_grad():
            theta -= alpha * theta.grad
        theta.grad.zero_()

print("Optimized theta:", theta)

输出:

Optimized theta: tensor([[0.6101],
        [0.7929]], requires_grad=True)

优缺点

小批量梯度下降结合了批量梯度下降和SGD的优点:它比SGD更稳定,同时比批量梯度下降更快。这种方法广泛应用于深度学习和其他机器学习算法中。

小批量梯度下降不是没有缺点的。选择合适的批量大小可能是一个挑战,而且有时需要通过实验来确定。文章来源地址https://www.toymoban.com/news/detail-767273.html

到了这里,关于大数据机器学习-梯度下降:从技术到实战的全面指南的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习梯度下降法笔记

    梯度下降法(Gradient Descent)是一种常用的优化算法,用于在机器学习和深度学习中最小化或最大化一个函数的值。在机器学习中,梯度下降法常用于调整模型的参数,使得模型能够更好地拟合训练数据。 这个优化算法的基本思想是通过迭代的方式,不断调整参数的值,使得

    2024年02月15日
    浏览(48)
  • 机器学习——梯度下降法

    问:梯度下降法一定能求得最小值??? 答: 在某些情况下,梯度下降法可以找到函数的最小值,但并非总是如此。这取决于函数的形状和梯度下降法的参数设置。如果函数具有多个局部最小值,梯度下降法可能会收敛到其中一个局部最小值,而不是全局最小值。此外,如

    2023年04月08日
    浏览(43)
  • 机器学习_梯度下降

    计算梯度向量其几何意义,就是函数变化的方向,而且是变化最快的方向。对于函数f(x),在点(xo,yo),梯度向量的方向也就是y值增加最快的方向。也就是说,沿着梯度向量的方向 △f(xo),能找到函数的最大值。反过来说,沿着梯度向量相反的方向,也就是 -△f(xo)的方向,梯度

    2024年01月19日
    浏览(47)
  • 梯度下降与机器学习的关系

    梯度下降是一种优化算法,常用于机器学习中的参数优化问题。在机器学习中,我们通常需要通过调整模型的参数来最小化损失函数,从而使模型能够更好地拟合数据。梯度下降算法通过不断迭代更新参数,沿着损失函数的负梯度方向移动,逐步接近最优解。 以下是梯度下降

    2024年02月22日
    浏览(44)
  • 大数据机器学习深度解读决策树算法:技术全解与案例实战

    本文深入探讨了机器学习中的决策树算法,从基础概念到高级研究进展,再到实战案例应用,全面解析了决策树的理论及其在现实世界问题中的实际效能。通过技术细节和案例实践,揭示了决策树在提供可解释预测中的独特价值。 决策树算法是机器学习领域的基石之一,其强

    2024年02月04日
    浏览(50)
  • [机器学习] 1. 梯度下降 Gradient Descent 与随机梯度下降 Stochastic Gradient Descent

    ML Theory 太魔怔了!!!!! 从微积分课上我们学到 对一个 (mathscr C^2) 函数,其二阶泰勒展开的皮亚诺余项形式 [f(bm w\\\') = f(bm w) + langle nabla f(bm w), bm w\\\' - bm wrangle + o(|bm w\\\' - bm w|)] 这说明只要 (bm w\\\') 和 (bm w) 挨得足够接近,我们就可以用 (f(bm w) + langle nabla f(

    2024年02月08日
    浏览(55)
  • 机器学习&&深度学习——随机梯度下降算法(及其优化)

    在我们没有办法得到解析解的时候,我们可以用过梯度下降来进行优化,这种方法几乎可以所有深度学习模型。 关于优化的东西,我自己曾经研究过智能排班算法和优化,所以关于如何找局部最小值,以及如何跳出局部最小值的一些基本思想是有感触的,随机梯度算法和其优

    2024年02月15日
    浏览(45)
  • 机器学习中为什么需要梯度下降

            在机器学习中,梯度下降是一种常用的优化算法,用于寻找损失函数的最小值。我们可以用一个简单的爬山场景来类比梯度下降的过程。         假设你被困在山上,需要找到一条通往山下的路。由于你是第一次来到这座山,对地形不熟悉,你只能通过尝试和

    2024年02月19日
    浏览(53)
  • 【机器学习(二)】线性回归之梯度下降法

    ✍ 作者简介: i阿极 ,CSDN Python领域新星创作者, 专注于分享python领域知识。 ✍ 本文录入于《机器学习案例》 ,本专栏精选了经典的机器学习算法进行讲解,针对大学生、初级数据分析工程师精心打造,对机器学习算法知识点逐一击破,不断学习,提升自我。 ✍ 订阅后,

    2023年04月14日
    浏览(46)
  • 机器学习中梯度下降法的缺点

    机器学习中的梯度下降法是一种寻找函数最小值的优化算法,广泛应用于训练各种模型,尤其是在深度学习中。尽管其应用广泛,但梯度下降法也存在一些不可忽视的缺点: 1. 局部最小值和鞍点 局部最小值问题:  对于非凸函数,梯度下降法可能会陷入局部最小值,而不是

    2024年02月20日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包