【C++】【Opencv】cv::Canny()边缘检测函数详解和示例

这篇具有很好参考价值的文章主要介绍了【C++】【Opencv】cv::Canny()边缘检测函数详解和示例。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Canny边缘检测是一种流行的边缘检测算法,由John F. Canny在1986年开发。它是一种多阶段过程,包括噪声滤波、计算图像强度的梯度、非最大值抑制以及双阈值检测。本文通过函数原型解读和示例对cv::Canny()函数进行详解,以帮助大家理解和使用。

原理

Canny边缘检测的步骤如下:

(1)高斯滤波(噪声滤波):使用高斯滤波器平滑图像以减少噪声。高斯滤波器是一种线性滤波器,可以消除图像中的高频噪声。
(2)计算梯度强度和方向:计算图像中每个像素的梯度强度和方向。梯度强度表示像素点处的边缘强度,而梯度方向表示边缘的方向。
(3)非最大值抑制:在计算梯度强度和方向后,非最大值抑制将抑制那些不是局部最大值的像素点。这意味着只有局部最大值的像素点才会被保留下来。
(4)双阈值检测:最后,双阈值检测用于检测边缘。这需要两个阈值,通常称为低阈值和高阈值。如果像素的梯度强度大于高阈值,则该像素被视为边缘;如果像素的梯度强度在两个阈值之间,则该像素被视为边缘候选;如果像素的梯度强度低于低阈值,则该像素被视为非边缘。

函数介绍

void cv::Canny(InputArray image, OutputArray edges, double lowThreshold, double highThreshold, int apertureSize = 3);

参数解释:

image:输入图像,应该是灰度图像。
edges:输出图像,即检测到的边缘图像。
lowThreshold:低阈值,用于双阈值检测。
highThreshold:高阈值,用于双阈值检测。
apertureSize:指定Sobel算子的大小,默认为3。

运行示例

设置阈值分别为50和150。
代码如下:

#include <opencv2/opencv.hpp>
#include <iostream>

using namespace cv;
using namespace std;

int main() {
    Mat image = imread("ceshi.jpg", IMREAD_COLOR); // 读取输入图像
    if (image.empty()) {
        cout << "Failed to read image." << endl;
        return -1;
    }
    Mat gray_image; cvtColor(image, gray_image, COLOR_BGR2GRAY); // 转换为灰度图像
    Mat edges_image;

    // 应用Canny边缘检测算法
    Canny(gray_image, edges_image, 50, 150);

    // 显示结果图像
    imshow("Input", image);
    imshow("Edges", edges_image);
    imwrite("cnany.jpg", edges_image);
    waitKey(0);
    return 0;
}

在上面的示例中,我们首先读取输入图像并将其转换为灰度图像。然后,我们使用Canny函数应用Canny边缘检测算法,并指定两个阈值(低阈值和高阈值)。最后,我们显示原始图像和检测到的边缘图像。图像对比如下所示。

cv::canny,C、C++日常记录,opencv,c++,计算机视觉,人工智能
上面为原图,下面为边缘检测效果图。
cv::canny,C、C++日常记录,opencv,c++,计算机视觉,人工智能

小结

选择使用Canny函数进行边缘计算时,应根据项目需求和场景,设置合适的低阈值和高阈值参数,以获得最佳的边缘检测结果。较低的阈值可能会导致更多的边缘被检测到,而较高的阈值可能会导致较少的边缘被检测到。因此,选择适当的阈值是使用Canny边缘检测函数的关键之一。文章来源地址https://www.toymoban.com/news/detail-767408.html

到了这里,关于【C++】【Opencv】cv::Canny()边缘检测函数详解和示例的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • OpenCV——Canny边缘检测算法

    图像分割是将数字图像细分为多个子区域的过程,在计算机视觉/机器视觉领域被广泛应用。它的目的是简化或改变图像的表示形式,以便更容易理解和分析。常见的图像分割方法包括阈值处理、聚类法、边缘检测和区域生长等。解决图像分割问题通常需要结合领域知识,以提

    2024年04月17日
    浏览(46)
  • 【OpenCV】第十章: Canny边缘检测

    第十章: Canny边缘检测 canny边缘检测是一种一阶微分算子检测算法,但为什么还要单独拿出来讲呢,因为它几乎是边缘检测算子中最优秀的边缘检测算子,你很难找到一种边缘检测算子能显著地比Canny算子做的更好。 Canny提出了边缘检测算子优劣评判的三条标准: 1、较高的检

    2024年02月03日
    浏览(42)
  • opencv-Canny 边缘检测

    Canny边缘检测是一种经典的图像边缘检测算法,它在图像中找到强度梯度的变化,从而 识别出图像中的边缘 。 Canny边缘检测的优点包括高灵敏度和低误检率。 在OpenCV中, cv2.Canny() 函数用于执行Canny边缘检测。 基本语法如下: 参数说明: image : 输入图像,通常为灰度图像。

    2024年02月22日
    浏览(62)
  • Python Opencv实践 - Canny边缘检测

     

    2024年02月11日
    浏览(50)
  • 【OpenCV实现图像梯度,Canny边缘检测】

    OpenCV中,可以使用各种函数实现图像梯度和Canny边缘检测,这些操作对于图像处理和分析非常重要。 图像梯度通常用于寻找图像中的边缘和轮廓。在OpenCV中,可以使用cv2.Sobel()函数计算图像的梯度,该函数可以计算图像在水平和垂直方向上的梯度。梯度的方向和大小可以帮助

    2024年02月07日
    浏览(50)
  • opencv(七)Canny边缘检测和图像轮廓检测

    提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 1、检测步骤 1)使用高斯滤波器,以平滑图像,滤掉噪声。 2)计算图像中每个像素点的梯度强度和方向 3)应用非极大值(Non-Maximum Suppression)抑制,以消除边缘检测带来的杂散响应 4)应用双阈值(

    2024年02月04日
    浏览(54)
  • OpenCV自学笔记十四:Canny边缘检测

    Canny边缘检测是一种经典的图像边缘检测算法,具有以下几个步骤: 1. 噪声抑制:首先对图像进行平滑处理,以去除图像中的噪声。常用的方法是应用高斯滤波器。 2. 计算梯度:通过对平滑后的图像应用Sobel算子(或其他梯度算子),计算图像的梯度幅值和梯度方向。梯度表

    2024年02月08日
    浏览(48)
  • OpenCV 笔记(12):常用的边缘检测算子—— Canny

    一阶导数、二阶导数的边缘算子虽然简单易用,但存在一些缺点。例如容易受噪声影响,容易产生虚假边缘。 John F. Canny 在 1986 年提出了 Canny 边缘检测算法。它是结合了梯度计算方法和非极大值抑制技术的一种边缘检测算法。该算法克服了之前的边缘检测算法在抑制噪声和保

    2024年02月03日
    浏览(58)
  • OpenCV 入门教程:Laplacian算子和Canny边缘检测

    边缘检测在图像处理和计算机视觉领域中起着重要的作用。 Laplacian 算子和 Canny 边缘检测是两种常用的边缘检测方法,它们能够帮助我们准确地检测图像中的边缘信息。 OpenCV 提供了这

    2024年02月13日
    浏览(55)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包