【数据结构初阶】二叉树(2)

这篇具有很好参考价值的文章主要介绍了【数据结构初阶】二叉树(2)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.二叉树的顺序结构及实现

1.1二叉树的顺序结构

普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。

【数据结构初阶】二叉树(2),数据结构,数据结构,算法,c语言,二叉树

1.2 堆的概念及结构

【数据结构初阶】二叉树(2),数据结构,数据结构,算法,c语言,二叉树
堆的性质:

  • 堆中某个节点的值总是不大于或不小于其父节点的值;
  • 堆总是一棵完全二叉树。
    【数据结构初阶】二叉树(2),数据结构,数据结构,算法,c语言,二叉树
    练习题:
    1.下列关键字序列为堆的是:()
    A 100,60,70,50,32,65
    B 60,70,65,50,32,100
    C 65,100,70,32,50,60
    D 70,65,100,32,50,60
    E 32,50,100,70,65,60
    F 50,100,70,65,60,32
    2.已知小根堆为8,15,10,21,34,16,12,删除关键字 8 之后需重建堆,在此过程中,关键字之间的比较次
    数是()。
    A 1
    B 2
    C 3
    D 4
    3.一组记录排序码为(5 11 7 2 3 17),则利用堆排序方法建立的初始堆为
    A(11 5 7 2 3 17)
    B(11 5 7 2 17 3)
    C(17 11 7 2 3 5)
    D(17 11 7 5 3 2)
    E(17 7 11 3 5 2)
    F(17 7 11 3 2 5)
    4.最小堆[0,3,2,5,7,4,6,8],在删除堆顶元素0之后,其结果是()
    A[3,2,5,7,4,6,8]
    B[2,3,5,7,4,6,8]
    C[2,3,4,5,7,8,6]
    D[2,3,4,5,6,7,8]

练习题答案
1.A 2.C 3.C 4.C

1.3 堆的实现

1.3.1向上调整

【数据结构初阶】二叉树(2),数据结构,数据结构,算法,c语言,二叉树

向上调整前提:前面数据是堆

void AdjustUp(HPDateType* a, int child)
{
	int parent = (child - 1) / 2;
	while (child > 0)
	{
		if (a[child] > a[parent])
		{
			swap(&a[child], &a[parent]);
			child = parent;
			parent = (parent - 1) / 2;
		}
		else
		{
			break;
		}
	}
}

1.3.2向下调整

int array[] = {27,15,19,18,28,34,65,49,25,37};

现在我们给出一个数组,逻辑上看做一颗完全二叉树。我们通过从根节点开始的向下调整算法可以把它调整成一个小堆。向下调整算法有一个前提:左右子树必须是一个堆,才能调整。

【数据结构初阶】二叉树(2),数据结构,数据结构,算法,c语言,二叉树

void AdjustDown(HPDateType* a, int n, int parent)
{
	int child = parent * 2 + 1;
	while (child > 0)
	{
		if ((child + 1 > n) && a[child + 1] > a[child])
		{
			child++;
		}
		if (a[parent] > a[child])
		{
			swap(&a[parent], &a[child]);
			child = parent;
			parent = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}

1.3.3交换函数

void swap(HPDateType* p1, HPDateType* p2)
{
	HPDateType tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}

1.3.4打印

void HeapPrint(HP* php)
{
	assert(php);
    for(size_t i = 0; i < php->size; i++)
	{
		printf("%d ", php->a[i]);
	}
	printf("\n");
}

1.3.5初始化

void HeapInit(HP* php)
{
	assert(php);

	php->a = NULL;
	php->size = 0;
	php->capacity = 0;
}

1.3.6销毁

void HeapDestroy(HP* php)
{
	assert(php);
	free(php->a);
	php->a = NULL;
	php->size = php->capacity = 0;
}

1.3.7插入

先插入一个10到数组的尾上,再进行向上调整算法直到满足堆。
【数据结构初阶】二叉树(2),数据结构,数据结构,算法,c语言,二叉树

void HeapPush(HP* php, HPDateType x)
{
	assert(php);
	if (php->size == php->capacity)
	{
		int newCapacity = php->capacity == 0 ? 4 : php->capacity * 2;
		HPDateType* tmp = (HPDateType*)realloc(php->a, sizeof(HPDateType) * newCapacity);
		php->capacity = newCapacity;
		php->a = tmp;
	}
	php->a[php->size] = x;
	php->size++;
	AdjustUp(php->a, php->size - 1);
}

1.3.8删除

删除堆是删除堆顶的数据,将堆顶的数据根最后一个数据一换,然后删除数组最后一个数据,再进行向下调整算法。
【数据结构初阶】二叉树(2),数据结构,数据结构,算法,c语言,二叉树

void HeapPop(HP* php)
{
	assert(php);
	assert(php->size > 0);
	swap(&php->a[0], &php->a[php->size]);
	php->size--;
	AdjustDown(php->a, php->size, 0);
}

1.3.9获得堆顶元素

HPDateType HeadTop(HP* php)
{
	assert(php);
	assert(php->size > 0);
	return php->a[0];
}

1.3.10判断是否为空

bool HeapEmpty(HP* php)
{
	assert(php);
	return php->size == 0;
}

1.3.6 堆的代码实现

Heap.h

#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<stdbool.h>
#include<assert.h>

typedef int HPDateType;
typedef struct Heap
{
	HPDateType* a;
	int size;
	int capacity;
}HP;

//向上调整
void AdjustUp(HPDateType* a, int child);
//向下调整
void AdjustDown(HPDateType* a, int n, int parent);
//交换函数
void swap(HPDateType* p1, HPDateType* p2);
//打印
void HeapPrint(HP* php);
//初始化
void HeapInit(HP* php);
//销毁
void HeapDestroy(HP* php);
//插入
void HeapPush(HP* php, HPDateType x);
//删除
void HeapPop(HP* php);
//获得堆顶元素
HPDateType HeapTop(HP* php);
//判断是否为空
bool HeapEmpty(HP* php);

Heap.c

#include"Heap.h"

void HeapInit(HP* php)
{
	assert(php);

	php->a = NULL;
	php->size = 0;
	php->capacity = 0;
}

void HeapDestroy(HP* php)
{
	assert(php);

	free(php->a);
	php->a = NULL;
	php->size = php->capacity = 0;
}

void Swap(HPDataType* p1, HPDataType* p2)
{
	HPDataType tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}

void AdjustUp(HPDataType* a, int child)
{
	int parent = (child - 1) / 2;
	while (child > 0)
	{
		if (a[child] > a[parent])
		{
			Swap(&a[child], &a[parent]);
			child = parent;
			parent = (parent - 1) / 2;
		}
		else
		{
			break;
		}
	}
}

void AdjustDown(HPDataType* a, int n, int parent)
{
	int child = parent * 2 + 1;
	while (child < n)
	{
		// 找出小的那个孩子
		if (child + 1 < n && a[child + 1] > a[child])
		{
			++child;
		}

		if (a[child] > a[parent])
		{
			Swap(&a[child], &a[parent]);
			// 继续往下调整
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}

void HeapPush(HP* php, HPDataType x)
{
	assert(php);
	// 扩容
	if (php->size == php->capacity)
	{
		int newCapacity = php->capacity == 0 ? 4 : php->capacity * 2;
		HPDataType* tmp = (HPDataType*)realloc(php->a, sizeof(HPDataType) * newCapacity);
		if (tmp == NULL)
		{
			perror("realloc fail");
			exit(-1);
		}

		php->a = tmp;
		php->capacity = newCapacity;
	}

	php->a[php->size] = x;
	php->size++;

	AdjustUp(php->a, php->size - 1);
}

void HeapPrint(HP* php)
{
	assert(php);

	for (size_t i = 0; i < php->size; i++)
	{
		printf("%d ", php->a[i]);
	}
	printf("\n");
}

void HeapPop(HP* php)
{
	assert(php);
	assert(php->size > 0);

	Swap(&php->a[0], &php->a[php->size - 1]);
	php->size--;

	AdjustDown(php->a, php->size, 0);
}

HPDataType HeapTop(HP* php)
{
	assert(php);
	assert(php->size > 0);

	return php->a[0];
}

bool HeapEmpty(HP* php)
{
	assert(php);

	return php->size == 0;
}

test.c

int main()
{
	int a[] = { 65,100,70,32,50,60 };
	HP hp;
	HeapInit(&hp);
	for(int i = 0; i < sizeof(a) / sizeof(int); i++)
	{
		HeapPush(&hp, a[i]);
	}
	HeapPrint(&hp);
	
	return 0;
}

利用堆的代码,我们可以将数组排成有序,如下:

int main()
{
	int a[] = { 2,3,5,7,4,6,8,65,100,70,32,50,60 };
	HP hp;
	HeapInit(&hp);
	for (int i = 0; i < sizeof(a)/sizeof(int); i++)
	{
		HeapPush(&hp, a[i]);
	}
	HeapPrint(&hp);
	int k = 5;
	while (!HeapEmpty(&hp) && k--)
	{
		printf("%d ", HeapTop(&hp));
		HeapPop(&hp);
	}

	HeapDestroy(&hp);

	return 0;
}

1.3.2堆的创建

下面我们给出一个数组,这个数组逻辑上可以看做一颗完全二叉树,但是还不是一个堆,现在我们通过算法,把它构建成一个堆。根节点左右子树不是堆,我们怎么调整呢?这里我们从倒数的第一个非叶子节点的子树开始调整,一直调整到根节点的树,就可以调整成堆。

int a[] = {1,5,3,8,7,6};

【数据结构初阶】二叉树(2),数据结构,数据结构,算法,c语言,二叉树

1.3.3 建堆时间复杂度

因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明(时间复杂度本来看的就是近似值,多几个节点不影响最终结果):
【数据结构初阶】二叉树(2),数据结构,数据结构,算法,c语言,二叉树
因此:建堆的时间复杂度为O(N)。

1.4 堆的应用

1.4.1 堆排序

堆排序即利用堆的思想来进行排序,总共分为两个步骤:

  1. 建堆
    升序:建大堆
    降序:建小堆

建堆有两种方法:
(1)使用向上调整,插入数据的思想建堆。插入数据到新的数组,就是在不断插入的过程中向上调整实现排序

void Swap(HPDataType* pa, HPDataType* pb)
{
	HPDataType tmp = *pa;
	*pa = *pb;
	*pb = tmp;
}
void AdjustUp(HPDataType* a, size_t child)
{
	size_t parent = (child - 1) / 2;
	while (child > 0)
	{
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{
			break;//跳出循环
		}
	}
}
void HeapSort(int* a, int n)
{
	//升序,建大堆,向上
	size_t i = 0;
	for (i = 1; i < n; ++i)
	{
		AdjustUp(a, i);
	}
}

int main()
{
	int a[] = { 4, 3, 10 , 2, 5, 9 };
	HeapSort(a, sizeof(a) / sizeof(int));
	for (int i = 0; i < sizeof(a) / sizeof(int); i++)
	{
		printf("%d ", a[i]);
	}
	printf("\n");
	return 0;
}

(2)使用向下调整,从倒数第一个非叶子节点开始,即最后一个节点的父亲,即[(size-1-1)/ 2 ]【找到这个父亲的节点,向下排序,然后这个父亲节点依次减一【就找到各个小堆,依次向下排序,就成为了一个堆。

void HeapSort(int* a, int n)
{
	//升序,建堆,向上
	/*int i = 0;
	for (i = 1; i < n; ++i)
	{
		AdjustUp(a, i);
	}*/
    //向下
	int i = 0;
	for (i = (n - 2) / 2; i >= 0; --i)
	{
		AdjustDown(a, i, n);
	}
}

💘不知不觉,【数据结构初阶】二叉树(2)以告一段落。通读全文的你肯定收获满满,让我们继续为数据结构学习共同奋进!!!文章来源地址https://www.toymoban.com/news/detail-767678.html

到了这里,关于【数据结构初阶】二叉树(2)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【数据结构初阶】树,二叉树

    让我们开始二叉树之前先复习回顾下之前学习的知识 1.1树的概念 树是一种 非线性 的数据结构,它是由n(n=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。 有一个特殊的结点,称为根结点, 根节

    2024年02月04日
    浏览(33)
  • 【数据结构初阶】二叉树(1)

    让我们开始二叉树之前先复习回顾下之前学习的知识 1.1树的概念 树是一种 非线性 的数据结构,它是由n(n=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。 有一个特殊的结点,称为根结点, 根节

    2024年02月04日
    浏览(36)
  • 【数据结构初阶】二叉树(2)

    1.1二叉树的顺序结构 普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统虚拟进程地址空间中的堆是两回事,一个

    2024年02月04日
    浏览(45)
  • 数据结构初阶--二叉树的链式结构

    目录 一.二叉树链式结构的概念 二.二叉树链式结构的功能实现 2.1.链式二叉树的定义 2.2.链式二叉树的构建 2.3.链式二叉树的遍历 2.3.1.先序遍历 2.3.2.中序遍历 2.3.3.后序遍历 2.3.4.层序遍历 2.4.链式二叉树的求二叉树的结点数量 法一:计数法 法二:分治法 2.5.链式二叉树的求二

    2024年02月12日
    浏览(43)
  • 数据结构:链式二叉树初阶

    目录 一.链式二叉树的逻辑结构 1.链式二叉树的结点结构体定义 2.链式二叉树逻辑结构 二.链式二叉树的遍历算法 1.前序遍历 2.中序遍历 3.后序遍历  4.层序遍历(二叉树非递归遍历算法) 层序遍历概念: 层序遍历算法实现思路:  层序遍历代码实现: 三.链式二叉树遍历算法的运用

    2024年02月02日
    浏览(46)
  • 数据结构初阶--二叉树的顺序结构之堆

    目录 一.堆的概念及结构 1.1.堆的概念 1.2.堆的存储结构 二.堆的功能实现 2.1.堆的定义 2.2.堆的初始化 2.3.堆的销毁 2.4.堆的打印 2.5.堆的插入 向上调整算法 堆的插入 2.6.堆的删除 向下调整算法 堆的删除 2.7.堆的取堆顶元素 2.8.堆的判空 2.9.堆的求堆的大小 三.堆的创建 3.1.向上调

    2024年02月14日
    浏览(45)
  • 初阶数据结构之---二叉树的顺序结构-堆

    今天要讲的堆,不是操作系统虚拟进程地址空间中(malloc,realloc等开空间的位置)的那个堆,而是数据结构中的堆,它们虽然名字相同,却是截然不同的两个概念。堆的底层其实是 完全二叉树 ,如果你问我,完全二叉树是什么。好吧,那我先从树开始讲起,开始我们今天的

    2024年03月14日
    浏览(58)
  • 数据结构奇妙旅程之二叉树初阶

    ꒰˃͈꒵˂͈꒱ write in front ꒰˃͈꒵˂͈꒱ ʕ̯•͡˔•̯᷅ʔ大家好,我是xiaoxie.希望你看完之后,有不足之处请多多谅解,让我们一起共同进步૮₍❀ᴗ͈ . ᴗ͈ აxiaoxieʕ̯•͡˔•̯᷅ʔ—CSDN博客 本文由xiaoxieʕ̯•͡˔•̯᷅ʔ 原创 CSDN 如需转载还请通知˶⍤⃝˶ 个人主页:xiaoxieʕ̯

    2024年01月19日
    浏览(64)
  • 【初阶数据结构】树结构与二叉树的基础概念

    君兮_的个人主页 勤时当勉励 岁月不待人 C/C++ 游戏开发 Hello,米娜桑们,这里是君兮_,今天带来数据结构里的重点内容也是在笔试,面试中的常见考点——树与二叉树,其中二叉树又分为很多种,我们先来讲讲基础的内容带大家一步步入门 在介绍二叉树之前,我们得先知道什

    2024年02月08日
    浏览(39)
  • 【初阶数据结构】二叉树的几种遍历详解

    君兮_的个人主页 勤时当勉励 岁月不待人 C/C++ 游戏开发 Hello,米娜桑们,这里是君兮_,有了我们之前介绍的树结构与二叉树的基础概念,今天我们来讲讲对二叉树的基本使用——遍历 我们自己先简单链式连接几个结点来创建一个二叉树方便我们之后对遍历的讲解 好了,有了

    2024年02月08日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包