基于opencv深度学习,交通目标检测,行人车辆检测,人流统计,交通流量检测

这篇具有很好参考价值的文章主要介绍了基于opencv深度学习,交通目标检测,行人车辆检测,人流统计,交通流量检测。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

文章目录
  • 0 前言+ 1. 目标检测概况+

  • 1.1 什么是目标检测?+ 1.2 发展阶段

  • 2. 行人检测+

  • 2.1 行人检测简介+ 2.2 行人检测技术难点+ 2.3 行人检测实现效果+ 2.4 关键代码-训练过程

  • 最后

设计项目案例演示地址: 链接

毕业设计代做一对一指导项目方向涵盖:

基于Python,MATLAB设计,OpenCV,,CNN,机器学习,R-CNN,GCN,LSTM,SVM,BP目标检测、语义分割、Re-ID、医学图像分割、目标跟踪、人脸识别、数据增广、
人脸检测、显著性目标检测、自动驾驶、人群密度估计、3D目标检测、CNN、AutoML、图像分割、SLAM、实例分割、人体姿态估计、视频目标分割,PyTorch、人脸检测、车道线检测、去雾 、全景分割、
行人检测、文本检测、OCR、姿态估计、边缘检测、场景文本检测、视频实例分割、3D点云、模型压缩、人脸对齐、超分辨、去噪、强化学习、行为识别、OpenCV、场景文本识别、去雨、机器学习、风格迁移、
视频目标检测、去模糊、活体检测、人脸关键点检测、3D目标跟踪、视频修复、人脸表情识别、时序动作检测、图像检索、异常检测等毕设指导,毕设选题,毕业设计开题报告,

1. 目标检测概况

1.1 什么是目标检测?

目标检测,粗略来说就是:输入图片/视频,经过处理,得到:目标的位置信息(比如左上角和右下角的坐标)、目标的预测类别、目标的预测置信度(confidence)。

1.2 发展阶段

  • 手工特征提取算法,如VJ、HOG、DPM + R-CNN算法(2014),最早的基于深度学习的目标检测器之一,其结构是两级网络:

  • 1)首先需要诸如选择性搜索之类的算法来提出可能包含对象的候选边界框;+ 2)然后将这些区域传递到CNN算法进行分类;

  • R-CNN算法存在的问题是其仿真很慢,并且不是完整的端到端的目标检测器。 + Fast R-CNN算法(2014末),对原始R-CNN进行了相当大的改进:提高准确度,并减少执行正向传递所花费的时间。 是,该模型仍然依赖于外部区域搜索算法。 + faster R-CNN算法(2015),真正的端到端深度学习目标检测器。删除了选择性搜索的要求,而是依赖于

  • (1)完全卷积的区域提议网络(RPN, Region Purpose Network),可以预测对象边界框和“对象”分数(量化它是一个区域的可能性的分数)。+ (2)然后将RPN的输出传递到R-CNN组件以进行最终分类和标记。

  • R-CNN系列算法,都采取了two-stage策略。特点是:虽然检测结果一般都非常准确,但仿真速度非常慢,即使是在GPU上也仅获得5 FPS。 + one-stage方法有:yolo(2015)、SSD(2015末),以及在这两个算法基础上改进的各论文提出的算法。这些算法的基本思路是:均匀地在图片的不同位置进行密集抽样,抽样时可以采用不同尺度和长宽比,然后利用CNN提取特征后直接进行分类与回归。 整个过程只需要一步,所以其优势是速度快,但是训练比较困难。 + yolov3(2018)是yolo作者提出的第三个版本(之前还提过yolov2和它们的tinny版本,tinny版本经过压缩更快但是也降低了准确率)。

2. 行人检测

这里学长以行人检测作为例子来讲解目标检测。

2.1 行人检测简介

行人检测( Pedestrian Detection)一直是计算机视觉研究中的热点和难点。行人检测要解决的问题是:找出图像或视频帧中所有的行人,包括位置和大小,一般用矩形框表示,和人脸检测类似,这也是典型的目标检测问题。

行人检测技术有很强的使用价值,它可以与行人跟踪,行人重识别等技术结合,应用于汽车无人驾驶系统(ADAS),智能机器人,智能视频监控,人体行为分析,客流统计系统,智能交通等领域。

2.2 行人检测技术难点

由于人体具有相当的柔性,因此会有各种姿态和形状,其外观受穿着,姿态,视角等影响非常大,另外还面临着遮挡 、光照等因素的影响,这使得行人检测成为计算机视觉领域中一个极具挑战性的课题。行人检测要解决的主要难题是:

  • 外观差异大:包括视角,姿态,服饰和附着物,光照,成像距离等。从不同的角度看过去,行人的外观是很不一样的。处于不同姿态的行人,外观差异也很大。由于人穿的衣服不同,以及打伞、戴帽子、戴围巾、提行李等附着物的影响,外观差异也非常大。光照的差异也导致了一些困难。远距离的人体和近距离的人体,在外观上差别也非常大。 + 遮挡问题: 在很多应用场景中,行人非常密集,存在严重的遮挡,我们只能看到人体的一部分,这对检测算法带来了严重的挑战。 + 背景复杂:无论是室内还是室外,行人检测一般面临的背景都非常复杂,有些物体的外观和形状、颜色、纹理很像人体,导致算法无法准确的区分。 + 检测速度:行人检测一般采用了复杂的模型,运算量相当大,要达到实时非常困难,一般需要大量的优化。

2.3 行人检测实现效果

深度学习人车密度统计,opencv,深度学习,目标检测

检测到行人后还可以做流量分析:

深度学习人车密度统计,opencv,深度学习,目标检测文章来源地址https://www.toymoban.com/news/detail-767679.html

2.4 关键代码-训练过程

import cv2
import numpy as np
import random
 
 
def load_images(dirname, amout = 9999):
    img_list = []
    file = open(dirname)
    img_name = file.readline()
    while img_name != '':  # 文件尾
        img_name = dirname.rsplit(r'/', 1)[0] + r'/' + img_name.split('/', 1)[1].strip('\n')
        img_list.append(cv2.imread(img_name))
        img_name = file.readline()
        amout -= 1
        if amout <= 0: # 控制读取图片的数量
            break
    return img_list
 
 
# 从每一张没有人的原始图片中随机裁出10张64*128的图片作为负样本
def sample_neg(full_neg_lst, neg_list, size):
    random.seed(1)
    width, height = size[1], size[0]
    for i in range(len(full_neg_lst)):
        for j in range(10):
            y = int(random.random() * (len(full_neg_lst[i]) - height))
            x = int(random.random() * (len(full_neg_lst[i][0]) - width))
            neg_list.append(full_neg_lst[i][y:y + height, x:x + width])
    return neg_list
 
 
# wsize: 处理图片大小,通常64*128; 输入图片尺寸>= wsize
def computeHOGs(img_lst, gradient_lst, wsize=(128, 64)):
    hog = cv2.HOGDescriptor()
    # hog.winSize = wsize
    for i in range(len(img_lst)):
        if img_lst[i].shape[1] >= wsize[1] and img_lst[i].shape[0] >= wsize[0]:
            roi = img_lst[i][(img_lst[i].shape[0] - wsize[0]) // 2: (img_lst[i].shape[0] - wsize[0]) // 2 + wsize[0], \
                  (img_lst[i].shape[1] - wsize[1]) // 2: (img_lst[i].shape[1] - wsize[1]) // 2 + wsize[1]]
            gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
            gradient_lst.append(hog.compute(gray))
    # return gradient_lst
 
 
def get_svm_detector(svm):
    sv = svm.getSupportVectors()
    rho, _, _ = svm.getDecisionFunction(0)
    sv = np.transpose(sv)
    return np.append(sv, [[-rho]], 0)
 
 
# 主程序
# 第一步:计算HOG特征
neg_list = []
pos_list = []
gradient_lst = []
labels = []
hard_neg_list = []
svm = cv2.ml.SVM_create()
pos_list = load_images(r'G:/python_project/INRIAPerson/96X160H96/Train/pos.lst')
full_neg_lst = load_images(r'G:/python_project/INRIAPerson/train_64x128_H96/neg.lst')
sample_neg(full_neg_lst, neg_list, [128, 64])
print(len(neg_list))
computeHOGs(pos_list, gradient_lst)
[labels.append(+1) for _ in range(len(pos_list))]
computeHOGs(neg_list, gradient_lst)
[labels.append(-1) for _ in range(len(neg_list))]
 
# 第二步:训练SVM
svm.setCoef0(0)
svm.setCoef0(0.0)
svm.setDegree(3)
criteria = (cv2.TERM_CRITERIA_MAX_ITER + cv2.TERM_CRITERIA_EPS, 1000, 1e-3)
svm.setTermCriteria(criteria)
svm.setGamma(0)
svm.setKernel(cv2.ml.SVM_LINEAR)
svm.setNu(0.5)
svm.setP(0.1)  # for EPSILON_SVR, epsilon in loss function?
svm.setC(0.01)  # From paper, soft classifier
svm.setType(cv2.ml.SVM_EPS_SVR)  # C_SVC # EPSILON_SVR # may be also NU_SVR # do regression task
svm.train(np.array(gradient_lst), cv2.ml.ROW_SAMPLE, np.array(labels))
 
# 第三步:加入识别错误的样本,进行第二轮训练
# 参考 http://masikkk.com/article/SVM-HOG-HardExample/
hog = cv2.HOGDescriptor()
hard_neg_list.clear()
hog.setSVMDetector(get_svm_detector(svm))
for i in range(len(full_neg_lst)):
    rects, wei = hog.detectMultiScale(full_neg_lst[i], winStride=(4, 4),padding=(8, 8), scale=1.05)
    for (x,y,w,h) in rects:
        hardExample = full_neg_lst[i][y:y+h, x:x+w]
        hard_neg_list.append(cv2.resize(hardExample,(64,128)))
computeHOGs(hard_neg_list, gradient_lst)
[labels.append(-1) for _ in range(len(hard_neg_list))]
svm.train(np.array(gradient_lst), cv2.ml.ROW_SAMPLE, np.array(labels))
 
 
# 第四步:保存训练结果
hog.setSVMDetector(get_svm_detector(svm))
hog.save('myHogDector.bin')



## 最后


ge(len(hard_neg_list))]
svm.train(np.array(gradient_lst), cv2.ml.ROW_SAMPLE, np.array(labels))
 
 
# 第四步:保存训练结果
hog.setSVMDetector(get_svm_detector(svm))
hog.save('myHogDector.bin')

最后

设计项目案例演示地址: 链接

毕业设计代做一对一指导项目方向涵盖:

基于Python,MATLAB设计,OpenCV,,CNN,机器学习,R-CNN,GCN,LSTM,SVM,BP目标检测、语义分割、Re-ID、医学图像分割、目标跟踪、人脸识别、数据增广、
人脸检测、显著性目标检测、自动驾驶、人群密度估计、3D目标检测、CNN、AutoML、图像分割、SLAM、实例分割、人体姿态估计、视频目标分割,PyTorch、人脸检测、车道线检测、去雾 、全景分割、
行人检测、文本检测、OCR、姿态估计、边缘检测、场景文本检测、视频实例分割、3D点云、模型压缩、人脸对齐、超分辨、去噪、强化学习、行为识别、OpenCV、场景文本识别、去雨、机器学习、风格迁移、
视频目标检测、去模糊、活体检测、人脸关键点检测、3D目标跟踪、视频修复、人脸表情识别、时序动作检测、图像检索、异常检测等毕设指导,毕设选题,毕业设计开题报告,

到了这里,关于基于opencv深度学习,交通目标检测,行人车辆检测,人流统计,交通流量检测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 计算机竞赛 交通目标检测-行人车辆检测流量计数 - 计算机竞赛

    🔥 优质竞赛项目系列,今天要分享的是 🚩 毕业设计 交通目标检测-行人车辆检测流量计数 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:4分 🧿 更多资料, 项目分享: https://

    2024年02月12日
    浏览(53)
  • 计算机设计大赛 交通目标检测-行人车辆检测流量计数 - 计算机设计大赛

    🔥 优质竞赛项目系列,今天要分享的是 🚩 毕业设计 交通目标检测-行人车辆检测流量计数 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:4分 🧿 更多资料, 项目分享: https://

    2024年01月25日
    浏览(53)
  • 基于深度学习的高精度红外行人车辆检测识别系统(PyTorch+Pyside6+YOLOv5模型)

    摘要:基于深度学习的高精度红外行人车辆检测识别系统可用于日常生活中或野外来检测与定位红外行人车辆目标,利用深度学习算法可实现图片、视频、摄像头等方式的红外行人车辆目标检测识别,另外支持结果可视化与图片或视频检测结果的导出。本系统采用YOLOv5目标检

    2024年02月08日
    浏览(48)
  • 行人车辆检测与计数系统(Python+YOLOv5深度学习模型+清新界面)

    摘要:行人车辆检测与计数系统用于交通路口行人及车辆检测计数,道路人流量、车流量智能监测,方便记录、显示、查看和保存检测结果。本文详细介绍行人车辆检测,在介绍算法原理的同时,给出 P y t h o n 的实现代码、 P y Q t 的UI界面以及训练数据集。在界面中可以选择

    2024年02月01日
    浏览(50)
  • 目标检测YOLO实战应用案例100讲-基于深度学习的交通标志小目标检测与识别研究

    目录 前言 目标检测算法相关理论  2.1 深度学习理论基础  2.1.2卷积神经网络 

    2024年02月11日
    浏览(50)
  • 基于深度学习,机器学习,卷积神经网络,OpenCV的交通标志识别交通标志检测

    在本文中,使用Python编程语言和库Keras和OpenCV建立CNN模型,成功地对交通标志分类器进行分类,准确率达96%。开发了一款交通标志识别应用程序,该应用程序具有图片识别和网络摄像头实时识别两种工作方式。 设计项目案例演示地址: 链接 毕业设计代做一对一指导项目方向涵

    2024年02月02日
    浏览(57)
  • 计算机竞赛 目标检测-行人车辆检测流量计数

    🔥 优质竞赛项目系列,今天要分享的是 行人车辆目标检测计数系统 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 目标检测,粗略来说就是:输入图片/视频,经过处理,得到:目标的位置信息(比如

    2024年02月07日
    浏览(47)
  • 基于深度学习的高精度农作物机器与行人目标检测系统(PyTorch+Pyside6+YOLOv5模型)

    摘要:基于深度学习的高精度农作物机器与行人目标检测系统可用于日常生活中或野外来检测与定位农作物机器与行人目标,利用深度学习算法可实现图片、视频、摄像头等方式的农作物机器与行人目标检测识别,另外支持结果可视化与图片或视频检测结果的导出。本系统采

    2024年02月16日
    浏览(61)
  • 深度学习之基于YoloV8的行人跌倒目标检测系统

    欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。    世界老龄化趋势日益严重,现代化的生活习惯又使得大多数老人独居,统计数据表明,跌倒是老年人的主要致伤原因。利用先进的计算机技术、传感器技术和图像信息处理技术实现人体跌倒

    2024年02月08日
    浏览(60)
  • OpenCV实例(九)基于深度学习的运动目标检测(一)YOLO运动目标检测算法

    2012年,随着深度学习技术的不断突破,开始兴起基于深度学习的目标检测算法的研究浪潮。 2014年,Girshick等人首次采用深度神经网络实现目标检测,设计出R-CNN网络结构,实验结果表明,在检测任务中性能比DPM算法优越。同时,何恺明等人针对卷积神经网络(Convolutional Neura

    2024年02月13日
    浏览(57)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包