【STM32 开发】| INA219采集电压、电流值

这篇具有很好参考价值的文章主要介绍了【STM32 开发】| INA219采集电压、电流值。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言

INA219 是一款具备 I2C 或 SMBUS 兼容接口的分流器和功率监测计。该器件监测分流器电压降和总线电源电压,转换次数和滤波选项可通过编程设定。可编程校准值与内部乘法器相结合,支持直接读取电流值(单位:安培)。通过附加乘法寄存器可计算功率(单位:瓦)。I2C 或 SMBUS 兼容接口 具有 16 个可编程地址。

INA219 可在 0V 至 26V 范围内感测总线中的分压。该器件由 3V 至 5.5V 单电源供电,电源的最大流耗为1mA。INA219 的工作温度范围为 -40°C 至 125°C。

1 原理图

ina219,STM32,stm32,单片机,嵌入式硬件

2 IIC地址说明

ina219,STM32,stm32,单片机,嵌入式硬件
此测试时A0、A1都下拉接地,所以INA219的IIC通信地址为1000000B

3 寄存器地址说明

ina219,STM32,stm32,单片机,嵌入式硬件

  • 0x00 配置寄存器,用来配置工作模式、采集范围以及其他参数
  • 0x01 分流电阻两端的电压
  • 0x02 总线电压(IN-到GND的电压差)
  • 0x03 功率
  • 0x04 经过分流电阻两端的电流
  • 0x05 校准寄存器,用于对测量结果进行校准

4 开始工作前配置

  • 0x00 寄存器Bit 13:设置检测最大检测电压 0 = 16V,1 = 32V (此处项目需要测3V到5V的电压,故设置Bit 13 为 0
  • 0x00 寄存器Bit 11-12:设置总线分流电阻最大的电压(此处项目需要测0A到5A的电流,故设置Bit 11-12 为 01,即量程±80mV,可测电流±8A
  • 0x00 寄存器Bit 0-2:设置工作模式(默认)
  • 0x05 寄存器:设置基准值(根据需要测的电压、电流范围再套入公式得出结果

由以下公式可得出0x05的配置值。
C a l = t r u n c ( 0.04096 C u r r e n t L S B × R s h u n t ) Cal = trunc\left ( \frac{0.04096}{CurrentLSB\times Rshunt} \right ) Cal=trunc(CurrentLSB×Rshunt0.04096)
C u r r e n t L S B = M a x i m u m E x p e c t e d C u r r e n t 2 15 CurrentLSB = \frac{Maximum Expected Current}{2^{15}} CurrentLSB=215MaximumExpectedCurrent

数据手册说明文档
ina219,STM32,stm32,单片机,嵌入式硬件文章来源地址https://www.toymoban.com/news/detail-767719.html

5 程序代码

1)驱动程序

#include "main.h"
#include "ina219aidcnr_helper.h"

uint16_t ina219_calibrationValue;
uint16_t ina219_currentDivider_mA;
float ina219_powerMultiplier_mW;

/**
 * @brief  The IIC reads 16bit data from the specified register address.
 * @param  ina219 Slave configuration structure of the IIC.
 * @param  registerAddress Internal memory address.
 * @return 16 bit register data.
 */
uint16_t INA219_ReadDataForRegister_16Bits(INA219_t *ina219, uint8_t registerAddress)
{
  uint8_t Value[2];

  HAL_I2C_Mem_Read(ina219->ina219_i2c, (INA219_ADDRESS<<1), registerAddress, 1, Value, 2, 1000);

  return ((Value[0] << 8) | Value[1]);
}

/**
 * @brief  Writes 16 bits of data to the register.
 * @param  ina219 Slave configuration structure of the IIC.
 * @param  registerAddress Internal memory address.
 * @param  Value 16 bits of data to be written.
 */
void INA219_WriteDataToRegister_16Bits(INA219_t *ina219, uint8_t registerAddress, uint16_t Value)
{
  uint8_t regAddr[2];
  /* High Byte */
  regAddr[0] = (Value >> 8) & 0xff;
  /* Low Byte */
  regAddr[1] = (Value >> 0) & 0xff;
  HAL_I2C_Mem_Write(ina219->ina219_i2c, (INA219_ADDRESS<<1), registerAddress, 1, (uint8_t*)regAddr, 2, 1000);
}

/**
 * @brief  Read bus voltage.
 * @param  ina219 Slave configuration structure of the IIC.
 * @return Read voltage value, unit mV.
 */
uint16_t INA219_ReadBusVoltage(INA219_t *ina219)
{
  uint16_t result = INA219_ReadDataForRegister_16Bits(ina219, INA219_REG_BUS_VOLTAGE);

  /* return mV */
  return ((result >> 3  ) * 4);
}

/**
 * @brief  Read current register value.
 * @param  ina219 Slave configuration structure of the IIC.
 * @return Current register value.
 */
uint16_t INA219_ReadCurrentRaw(INA219_t *ina219)
{
  uint16_t result = INA219_ReadDataForRegister_16Bits(ina219, INA219_REG_CURRENT);

  return (result);
}

/**
 * @brief  Read current register value, unit mA.
 * @param  ina219 Slave configuration structure of the IIC.
 * @return Current value.
 */
uint16_t INA219_ReadCurrent_mA(INA219_t *ina219)
{
  uint16_t result = INA219_ReadCurrentRaw(ina219);

  return (result / ina219_currentDivider_mA);
}

/**
 * @brief  Read current register value, unit mV.
 * @param  ina219 Slave configuration structure of the IIC.
 * @return Shunt Voltage value.
 */
uint16_t INA219_ReadShuntVoltage_mV(INA219_t *ina219)
{
  uint16_t result = INA219_ReadDataForRegister_16Bits(ina219, INA219_REG_SHUNT_VOLTAGE);

  /* When multiple sign bits are present, they will all be the same value.
   * Negative numbers are represented in 2's complement format.
   * Generate the 2's complement of a negative number by complementing the absolute value binary number and adding 1.
   * Extend the sign, denoting a negative number by setting the MSB = 1.
   * Extend the sign to any additional sign bits to form the 16-bit word. */
  if(result > MAX_SHUNT_RANGE)
  {
    result = 65536 - MAX_SHUNT_RANGE;
  }

  /* Shunt voltage, unit mV. */
  return (result / 100);
}

/**
 * @brief  INA219 system reset.
 * @param  ina219 Slave configuration structure of the IIC.
 */
void INA219_Reset(INA219_t *ina219)
{
  INA219_WriteDataToRegister_16Bits(ina219, INA219_REG_CONFIG, INA219_CONFIG_RESET);
  HAL_Delay(1);
}

/**
 * @brief Set calibration register.
 * @param ina219 Slave configuration structure of the IIC.
 * @param calibrationData Calibrated data.
 */
void INA219_SetCalibration(INA219_t *ina219, uint16_t calibrationData)
{
  INA219_WriteDataToRegister_16Bits(ina219, INA219_REG_CALIBRATION, calibrationData);
}

/**
 * @brief  Gets the value of the configuration register.
 * @param  ina219 Slave configuration structure of the IIC.
 * @return Configuration Register value.
 */
uint16_t INA219_GetConfigInfo(INA219_t *ina219)
{
  uint16_t result = INA219_ReadDataForRegister_16Bits(ina219, INA219_REG_CONFIG);
  return result;
}

/**
 * @brief Set configuration register.
 * @param ina219 Slave configuration structure of the IIC.
 * @param configData Configuration data.
 */
void INA219_SetConfig(INA219_t *ina219, uint16_t configData)
{
  INA219_WriteDataToRegister_16Bits(ina219, INA219_REG_CONFIG, configData);
}

/**
 * @brief The measurement results are calibrated. Voltage range is 16V, Current range is 8A.
 * @param ina219 Slave configuration structure of the IIC.
 */
void INA219_SetCalibration_16V_8A(INA219_t *ina219)
{
  uint16_t configInfo = INA219_CONFIG_VOLTAGE_RANGE_16V |
                    INA219_CONFIG_GAIN_2_80MV | INA219_CONFIG_BADCRES_12BIT |
                    INA219_CONFIG_SADCRES_12BIT_1S_532US |
                    INA219_CONFIG_MODE_SANDBVOLT_CONTINUOUS;

  // Current_LSB = Maximum Expected Current / 2^15 = (80 / 10) / 2^15 = 0.0002
  // Cal = 0.04096 / (Current_LSB / R) = 0.04096 / (0.0002A * 0.01R) = 20480 = 0x5000
  // Calibration Register = 20480
  ina219_calibrationValue = 20480;

  // 1mA = Current_LSB * bits = 200uA * 5bit (5 bit/mA)
  ina219_currentDivider_mA = 5;
  // 1mW = Power_LSB * bits = 4mW * 0.25bit (0.25f bit/mW)
  ina219_powerMultiplier_mW = 0.25f;

  INA219_SetCalibration(ina219, ina219_calibrationValue);
  INA219_SetConfig(ina219, configInfo);
}

/**
 * @brief  Ina219 driver initialization
 * @param  ina219 Slave configuration structure of the IIC.
 * @param  i2c Pointer to a I2C_HandleTypeDef structure that contains
 *             the configuration information for the specified I2C.
 * @param  Address  Configuration data.
 * @return status.
 */
uint8_t INA219_Init(INA219_t *ina219, I2C_HandleTypeDef *i2c, uint8_t Address)
{
  ina219->ina219_i2c = i2c;
  ina219->Address = Address;

  ina219_currentDivider_mA = 0;
  ina219_powerMultiplier_mW = 0;

  uint8_t ina219_isReady = HAL_I2C_IsDeviceReady(i2c, (Address << 1), 3, 2);

  if(ina219_isReady == HAL_OK)
  {

    INA219_Reset(ina219);
    INA219_SetCalibration_16V_8A(ina219);

    return 1;
  }

  else
  {
    return 0;
  }
}

2)头文件


#ifndef INA219AIDCNR_HELPER_H
#define INA219AIDCNR_HELPER_H


#define INA219_ADDRESS 							        (0x40)
#define MAX_SHUNT_RANGE                     			(0x0FA0)

/* Register */
#define	INA219_REG_CONFIG						        (0x00)
#define	INA219_REG_SHUNT_VOLTAGE				    	(0x01)
#define	INA219_REG_BUS_VOLTAGE					    	(0x02)
#define	INA219_REG_POWER						        (0x03)
#define	INA219_REG_CURRENT						      	(0x04)
#define	INA219_REG_CALIBRATION					    	(0x05)
//
#define INA219_CONFIG_RESET 					      	(0x8000)
//
#define INA219_CONFIG_VOLTAGE_RANGE_16V					(0x0000)      // 0-16V Range
#define INA219_CONFIG_VOLTAGE_RANGE_32V					(0x2000)      // 0-32V Range

#define	INA219_CONFIG_GAIN_1_40MV				    	(0x0000)      // Gain 1, 40mV Range
#define	INA219_CONFIG_GAIN_2_80MV				    	(0x0800)      // Gain 2, 80mV Range
#define	NA219_CONFIG_GAIN_4_160MV				    	(0x1000)      // Gain 4, 160mV Range
#define	INA219_CONFIG_GAIN_8_320MV				  		(0x1800)      // Gain 8, 320mV Range

#define	INA219_CONFIG_BADCRES_9BIT				      	(0x0000)  // 9-bit bus res = 0..511
#define	INA219_CONFIG_BADCRES_10BIT				      	(0x0080)  // 10-bit bus res = 0..1023
#define	INA219_CONFIG_BADCRES_11BIT				      	(0x0100)  // 11-bit bus res = 0..2047
#define	INA219_CONFIG_BADCRES_12BIT				      	(0x0180)  // 12-bit bus res = 0..4097
#define	INA219_CONFIG_BADCRES_12BIT_2S_1060US 			(0x0480)  // 2 x 12-bit bus samples averaged together
#define	INA219_CONFIG_BADCRES_12BIT_4S_2130US	  		(0x0500)  // 4 x 12-bit bus samples averaged together
#define	INA219_CONFIG_BADCRES_12BIT_8S_4260US	  		(0x0580)  // 8 x 12-bit bus samples averaged together
#define	INA219_CONFIG_BADCRES_12BIT_16S_8510US			(0x0600)  // 16 x 12-bit bus samples averaged together
#define	INA219_CONFIG_BADCRES_12BIT_32S_17MS	  		(0x0680)  // 32 x 12-bit bus samples averaged together
#define	INA219_CONFIG_BADCRES_12BIT_64S_34MS	  		(0x0700)  // 64 x 12-bit bus samples averaged together
#define	INA219_CONFIG_BADCRES_12BIT_128S_69MS	  		(0x0780)  // 128 x 12-bit bus samples averaged together

#define	INA219_CONFIG_SADCRES_9BIT_1S_84US		  		(0x0000)  // 1 x 9-bit shunt sample
#define	INA219_CONFIG_SADCRES_10BIT_1S_148US	  		(0x0008)  // 1 x 10-bit shunt sample
#define	INA219_CONFIG_SADCRES_11BIT_1S_276US	  		(0x0010)  // 1 x 11-bit shunt sample
#define	INA219_CONFIG_SADCRES_12BIT_1S_532US	  		(0x0018)  // 1 x 12-bit shunt sample
#define	INA219_CONFIG_SADCRES_12BIT_2S_1060US	  		(0x0048)  // 2 x 12-bit shunt samples averaged together
#define	INA219_CONFIG_SADCRES_12BIT_4S_2130US	  		(0x0050)  // 4 x 12-bit shunt samples averaged together
#define	INA219_CONFIG_SADCRES_12BIT_8S_4260US	 	 	(0x0058)  // 8 x 12-bit shunt samples averaged together
#define	INA219_CONFIG_SADCRES_12BIT_16S_8510US			(0x0060)  // 16 x 12-bit shunt samples averaged together
#define	INA219_CONFIG_SADCRES_12BIT_32S_17MS	  		(0x0068)  // 32 x 12-bit shunt samples averaged together
#define	INA219_CONFIG_SADCRES_12BIT_64S_34MS	  		(0x0070)  // 64 x 12-bit shunt samples averaged together
#define	INA219_CONFIG_SADCRES_12BIT_128S_69MS	  		(0x0078)  // 128 x 12-bit shunt samples averaged together

#define INA219_CONFIG_MODE_MASK					        0x07
#define	INA219_CONFIG_MODE_POWERDOWN			       	0x00
#define	INA219_CONFIG_MODE_SVOLT_TRIGGERED		   		0x01
#define	INA219_CONFIG_MODE_BVOLT_TRIGGERED		   		0x02
#define	INA219_CONFIG_MODE_SANDBVOLT_TRIGGERED	 		0x03
#define	INA219_CONFIG_MODE_ADCOFF				        0x04
#define	INA219_CONFIG_MODE_SVOLT_CONTINUOUS		   		0x05
#define	INA219_CONFIG_MODE_BVOLT_CONTINUOUS		   		0x06
#define	INA219_CONFIG_MODE_SANDBVOLT_CONTINUOUS  		0x07


typedef struct
{
  I2C_HandleTypeDef 	*ina219_i2c;
  uint8_t				Address;
} INA219_t;


uint8_t INA219_Init(INA219_t *ina219, I2C_HandleTypeDef *i2c, uint8_t Address);
uint16_t INA219_ReadBusVoltage(INA219_t *ina219);
uint16_t INA219_ReadCurrent_mA(INA219_t *ina219);
uint16_t INA219_ReadCurrent_raw(INA219_t *ina219);
uint16_t INA219_ReadShuntVoltage_mV(INA219_t *ina219);
uint16_t INA219_ReadDataForRegister_16Bits(INA219_t *ina219, uint8_t registerAddress);
uint16_t INA219_GetConfigInfo(INA219_t *ina219);

void INA219_Reset(INA219_t *ina219);
void INA219_SetCalibration(INA219_t *ina219, uint16_t calibrationData);
void INA219_SetConfig(INA219_t *ina219, uint16_t configData);
void INA219_SetCalibration_16V_8A(INA219_t *ina219);
void INA219_WriteDataToRegister_16Bits(INA219_t *ina219, uint8_t registerAddress, uint16_t Value);




#endif //INA219AIDCNR_HELPER_H

3) 测试代码

int main(void)
{
  /* USER CODE BEGIN 1 */
  uint16_t vbus, vshunt, current;
  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_USART1_UART_Init();
  MX_I2C2_Init();
  /* USER CODE BEGIN 2 */

  while(!INA219_Init(&ina219, &hi2c2, INA219_ADDRESS))
  {

  }
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
    vbus = INA219_ReadBusVoltage(&ina219);
    vshunt = INA219_ReadShuntVoltage_mV(&ina219);
    current = INA219_ReadCurrent_mA(&ina219);
    
    sprintf(strBuffer, "INA219 param: vbus:%d mV; current:%d mA\r\n", vbus, current);
    HAL_UART_Transmit(&huart1, strBuffer, strlen(strDataBuf), 0xff);

    UserDelay_ms(500);
  }

到了这里,关于【STM32 开发】| INA219采集电压、电流值的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于STM32电压检测和电流检测

    CPU: STM32F103C8 屏幕: 0.96寸OLED屏幕(SPI接口) 电压测量模块: INA226(IIC接口) 点流测量模块: ACS712(ADC采集) 1.可测量直流电压0~36V,适用于低电压电子电路中。 2.可测量直流电0~5A范围内,目前采用的ACS712测量量程为5A,该模块有多个量程,可测量到20A 3.实时功率监测 4.电池电量监测

    2024年02月02日
    浏览(38)
  • 【STM32】BLDC驱动&控制开发笔记 | 10_基于STM32F407+DRV8323的ADC电流采集

    在上一篇文章的基础上继续努力!👇 🧀【STM32】BLDC驱动控制开发笔记 | 09_基于STM32F407的ADC电压采集,多通道ADC+DMA+USART_CSDN博客@F菌的进阶之路 在实现电机闭环控制的实验程序中,通过ADC功能来实现电压或电流的采集十分重要。一般来说,为了获得更高的精度,会在直接通过

    2024年04月17日
    浏览(30)
  • STM32采集电流互感器(电流互感器模块)数据

    1. 电流互感器简介 在发电、变电、输电、配电和用电的线路中电流大小悬殊,从几安到几万安都有。为便于测量、保护和控制需要转换为比较统一的电流,另外线路上的电压一般都比较高如直接测量是非常危险的。电流互感器就起到电流变换和电气隔离作用。 2. 电流互感器

    2024年02月12日
    浏览(28)
  • STM32F103C8T6 ADC输入电流电压特性

    ADC 输入电压范围:0-VDDA(0-3.3V) 输入电流范围:0-220µA 输入电阻:50kΩ 采样频率:0.6-14MHz   官方STM32C103C8系列数据手册: https://www.st.com/en/microcontrollers-microprocessors/stm32f103c8.html

    2024年02月13日
    浏览(25)
  • 运放电路采集电流、电压

    当我们利用单片机ADC采样功能,采集电流电压信号时,单片机的IO口输入 电压范围是0~3.3V ,所以为了保证安全,需要把测量电压保持在这个范围之内。 设计目标:         采集电流范围:0~1A ·       采集电压范围:0~15V         实物:基于STM32F103C8T6的电流电压采样,通过

    2024年02月09日
    浏览(24)
  • stm32_acs712电流采集计算思路

    Acs712数据手册地址 :https://item.szlcsc.com/45473.html 需要测量的参数 0 实际电流值 : ACS712_A 1  acs712供电电压 : Vin    2  ACS 输出电压 : 712_OUT_V 3  ACS 输出电压, 经过分压电阻后送到ADC引脚的电压 : R_OUT_V 4 单片机12位ADC读出的原始值 :adc_data 5 分压低端电阻: R1  (10k ) 高端电阻 :R2   

    2024年01月20日
    浏览(25)
  • 基于STM32的单相可调逆变电源设计(能输出稳定的电压电流,也可扩展为三相输出)

    本篇文章主要介绍的是我前段时间做的一个基于STM32H750VB为主控芯片的单相可调逆变电源,额定输入为10V-80V,额定输出电压为220V,额定输出电流为5A。做这个逆变电源的时候还是遇到了很多困难,首先是网上这方面的资料并不多,ACDC的资料不少,但是DCAC的资料少得可怜,在

    2024年02月14日
    浏览(38)
  • STM32笔记_10(ADC—电压采集)

    STM32f103 系列有 3 个 ADC ,精度为 12 位 ,每个 ADC 最多有 16 个外部通道 。其中 ADC1 和ADC2 都有 16 个外部通道, ADC3 根据 CPU 引脚的不同通道数也不同,一般都有 8 个外部通道。         ADC 输入范围为: VREF- ≤ VIN ≤ VREF+ 。由 VREF-、 VREF+ 、 VDDA 、 VSSA、这四个外部引脚决定

    2024年02月04日
    浏览(30)
  • STM32F103_ADC电压采集

    ADC寄存器 STM32 的 ADC 是 12 位逐次逼近型的模拟数字转换器。 它有 18 个通道,可测量 16 个外部和 2 个内部信号源。各通道的 A/D 转换可以单次、连续、扫描或间断模式执行。ADC 的结果可以左对齐或右对齐方式存储在 16 位数据寄存器中。 模拟看门狗特性允许应用程序检测输入

    2023年04月08日
    浏览(24)
  • 直流有刷驱动板电流电压采集

    电流采集会涉及到电流环的使用。

    2024年02月16日
    浏览(32)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包