描述二次型矩阵求法及二次型矩阵正定性判定

这篇具有很好参考价值的文章主要介绍了描述二次型矩阵求法及二次型矩阵正定性判定。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.二次型的矩阵的求法:
二次型f(x,y,z)=ax²+by²+cz²+dxy+exz+fyz,用矩阵表示的时候,矩阵的元素与二次型系数的对应关系为:A11=a,A22=b,A33=c,A12=A21=d/2,A13=A31=e/2,A23=A32=f/2。 

2.二次型矩阵正定性判定 

已知二次型要判定一个二次型是否不定,可以使用二次型所对应的矩阵的顺序主子式来判定:,矩阵,线性代数,程序人生判定是否正定。

利用霍尔维茨定理:称对角线元是A的前k个对角线元的k阶子式是A的k阶顺序主子式

解:二次型的矩阵为

,正定顺序主子式值全正

利用霍尔维茨定理判定正定

,

 ,

顺序主子式都大于零,所以二次型是正定二次型。文章来源地址https://www.toymoban.com/news/detail-767951.html

到了这里,关于描述二次型矩阵求法及二次型矩阵正定性判定的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【考研数学】线性代数第六章 —— 二次型(3,正定矩阵与正定二次型)

    (1)二次型 f ( x 1 , x 2 , x 3 ) = x 1 2 + 3 x 2 2 + 2 x 3 2 = X T A X f(x_1,x_2,x_3)=x_1^2+3x_2^2+2x_3^2=pmb{X^TAX} f ( x 1 ​ , x 2 ​ , x 3 ​ ) = x 1 2 ​ + 3 x 2 2 ​ + 2 x 3 2 ​ = X T A X 有如下特点: 对任意的 x 1 , x 2 , x 3 x_1,x_2,x_3 x 1 ​ , x 2 ​ , x 3 ​ ,有 f ( x 1 , x 2 , x 3 ) ≥ 0 f(x_1,x_2,x_3)geq0 f ( x 1 ​

    2024年02月07日
    浏览(48)
  • 二次型及其矩阵

    二次型定义1:   称为 n 元二次型,简称为 二次型 。 定义2: 只含平方项的二次型,即形如  称为二次型的标准形(或法式)。 二次型的矩阵表示法:  二次型的矩阵是实对称阵。  定义3: 二次型经可逆变换后的矩阵: 定义4: 若线性变换 可逆,则称线性变换为 可逆线性

    2024年02月11日
    浏览(46)
  • 第七章,相似矩阵及其应用,3-二次型、合同矩阵与合同变换

    玩转线性代数(38)二次型概念、合同矩阵与合同变换的笔记,相关证明以及例子见原文 含有n个变量 x 1 , x 2 , . . . x n x_1,x_2,...x_n x 1 ​ , x 2 ​ , ... x n ​ 的二次齐次函数: f ( x 1 , x 2 , . . . x n ) = a 11 x 1 2 + a 22 x 2 2 + . . . + a n n x n 2 + 2 a 12 x 1 x 2 + 2 a 13 x 1 x 3 + . . . + 2 a n − 1 , n x

    2024年02月11日
    浏览(53)
  • 【矩阵论】1.准备知识——Hermite阵,二次型,矩阵合同,正定阵,幂0阵,幂等阵,矩阵的秩

    矩阵论的所有文章,主要内容参考北航赵迪老师的课件 [注]由于矩阵论对计算机比较重要,所以选修了这门课,但不是专业搞数学的,所以存在很多口语化描述,而且对很多东西理解不是很正确与透彻,欢迎大家指正。我可能间歇性忙,但有空一定会回复修改的。 矩阵论 1

    2024年02月03日
    浏览(102)
  • Salome平台介绍及二次开发案例

    基于国产的“神威·太湖之光”,国家超级计算无锡中心发布了“无锡超算云平台”,将打造世界一流的超算技术与产业发展深度融合的高性能计算应用生态圈。现已升级为 “神工坊”2.0平台 ,即将于2022年4月公测。在此基础上,向有需求的用户提供进一步的高性能仿真App定

    2023年04月13日
    浏览(38)
  • phpcms_v9模板制作及二次开发常用代码

    ==== [{$r[catname]}] 所在版块的调用 0-1、调用指定栏目下面的内容页的内容 {pc:get sql=“SELECT * FROM v9_page where catid=31”} {loop $data $key KaTeX parse error: Expected \\\'EOF\\\', got \\\'}\\\' at position 4: val}̲ {str_cut(s… val[content]),705, ‘…’)} {/loop} {/pc} {str_cut( KaTeX parse error: Expected \\\'EOF\\\', got \\\'}\\\' at position 16:

    2024年02月07日
    浏览(39)
  • LA@二次型标准形@标准化问题介绍和合同对角化@二次型可标准化定理

    如果二次型只含有变量的平方项,则称之为 二次型的标准形 或 法式 ,即 f ( y 1 , ⋯   , y n ) f(y_1,cdots,y_n) f ( y 1 ​ , ⋯ , y n ​ ) = ∑ i = 1 n k i y i 2 sum_{i=1}^{n}k_iy_i^2 ∑ i = 1 n ​ k i ​ y i 2 ​ 标准形的矩阵式 f ( y 1 , ⋯   , y n ) = ∑ i n k i y i 2 = ( y 1 , y 2 , ⋯   , y n ) ( k 1 0 ⋯

    2024年02月09日
    浏览(53)
  • 【线性代数】四、二次型

    如果系数a ij 全为实数,那么为实二次型。上述二次型展开式可表示用矩阵为 可以看出,二次型矩阵A是一个 对称矩阵 ,也就是满足A T =A,一个实对称矩阵对应的则是一个实二次型。一个二次型有多种写法,也有多个展开式,但是二次型矩阵是唯一的,各个等价的二次型展开

    2024年02月05日
    浏览(49)
  • 线性代数——二次型

    学习高等数学和线性代数需要的初等数学知识 线性代数——行列式 线性代数——矩阵 线性代数——向量 线性代数——线性方程组 线性代数——特征值和特征向量 线性代数——二次型 本文大部分内容皆来自李永乐老师考研教材和视频课。 将含有 n n n 个变量 x 1 , x 2 , … ,

    2024年02月15日
    浏览(46)
  • 二次型的来龙去脉

            在学习二次型的时候没有好好理解概念,导致记住了可以用的结论,但往往遇到题目反应不过来,故这次对二次型进行一个详细剖析。         首先二次型是什么?是一个n元变量的二次齐次多项式,根据二次齐次多项式的定义(所有单项的次数都是2,单项的次数为

    2024年02月09日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包