Hive窗口函数全解

这篇具有很好参考价值的文章主要介绍了Hive窗口函数全解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

在SQL中有一类函数叫做聚合函数,例如sum()、avg()、max()等等,这类函数可以将多行数据按照规则聚集为一行,一般来讲聚集后的行数是要少于聚集前的行数的。但是有时我们想要既显示聚集前的数据,又要显示聚集后的数据,这时我们便引入了窗口函数。窗口函数又叫OLAP函数/分析函数,窗口函数兼具分组和排序功能。

本文分为两部分:
第一部分是Hive窗口函数详解,剖析各种窗口函数(几乎涵盖Hive所有的窗口函数);
第二部分是窗口函数实际应用,这部分总共有五个例子,都是工作常用、面试必问的非常经典的例子。

Hive 窗口函数

窗口函数最重要的关键字是 partition by 和 order by

具体语法如下:XXX over (partition by xxx order by xxx)

特别注意:over()里面的 partition by 和 order by 都不是必选的,over()里面可以只有partition by,也可以只有order by,也可以两个都没有,大家需根据需求灵活运用。

窗口函数我划分了几个大类,我们一类一类的讲解。

1. SUM、AVG、MIN、MAX

讲解这几个窗口函数前,先创建一个表,以实际例子讲解大家更容易理解。

首先创建用户访问页面表:user_pv

create table user_pv(
cookieid string,  -- 用户登录的cookie,即用户标识
createtime string, -- 日期
pv int -- 页面访问量
); 

给上面这个表加上如下数据:

cookie1,2021-05-10,1
cookie1,2021-05-11,5
cookie1,2021-05-12,7
cookie1,2021-05-13,3
cookie1,2021-05-14,2
cookie1,2021-05-15,4
cookie1,2021-05-16,4

  • SUM()使用

执行如下查询语句:

select cookieid,createtime,pv,
sum(pv) over(partition by cookieid order by createtime) as pv1 
from user_pv;

 

执行如下查询语句:

select cookieid,createtime,pv,
sum(pv) over(partition by cookieid ) as pv1 
from user_pv;

结果如下:hive 窗口函数,hive,大数据,hadoop,Hive窗口函数

第一条SQL的over()里面加 order by ,第二条SQL没加order by ,结果差别很大

所以要注意了

  • over()里面加 order by 表示:分组内从起点到当前行的pv累积,如,11号的pv1=10号的pv+11号的pv, 12号=10号+11号+12号;

  • over()里面不加 order by 表示:将分组内所有值累加。

AVG,MIN,MAX,和SUM用法一样,这里就不展开讲了,但是要注意 AVG,MIN,MAX 的over()里面加不加 order by 也和SUM一样,如 AVG 求平均值,如果加上 order by,表示分组内从起点到当前行的平局值,不是全部的平局值。MIN,MAX 同理。

2. ROW_NUMBER、RANK、DENSE_RANK、NTILE

还是用上述的用户登录日志表:user_pv,里面的数据换成如下所示:

cookie1,2021-05-10,1
cookie1,2021-05-11,5
cookie1,2021-05-12,7
cookie1,2021-05-13,3
cookie1,2021-05-14,2
cookie1,2021-05-15,4
cookie1,2021-05-16,4
cookie2,2021-05-10,2
cookie2,2021-05-11,3
cookie2,2021-05-12,5
cookie2,2021-05-13,6
cookie2,2021-05-14,3
cookie2,2021-05-15,9
cookie2,2021-05-16,7

  • ROW_NUMBER()使用:

ROW_NUMBER()从1开始,按照顺序,生成分组内记录的序列。

SELECT 
cookieid,
createtime,
pv,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn 
FROM user_pv;

结果如下:hive 窗口函数,hive,大数据,hadoop,Hive窗口函数


  • RANK 和 DENSE_RANK 使用:

RANK() 生成数据项在分组中的排名,排名相等会在名次中留下空位。

DENSE_RANK()生成数据项在分组中的排名,排名相等会在名次中不会留下空位。

SELECT 
cookieid,
createtime,
pv,
RANK() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn1,
DENSE_RANK() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn2,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY pv DESC) AS rn3 
FROM user_pv 
WHERE cookieid = 'cookie1';

结果如下:hive 窗口函数,hive,大数据,hadoop,Hive窗口函数


  • NTILE的使用:

有时会有这样的需求:如果数据排序后分为三部分,业务人员只关心其中的一部分,如何将这中间的三分之一数据拿出来呢?NTILE函数即可以满足。

ntile可以看成是:把有序的数据集合平均分配到指定的数量(num)个桶中, 将桶号分配给每一行。如果不能平均分配,则优先分配较小编号的桶,并且各个桶中能放的行数最多相差1。

然后可以根据桶号,选取前或后 n分之几的数据。数据会完整展示出来,只是给相应的数据打标签;具体要取几分之几的数据,需要再嵌套一层根据标签取出。

SELECT 
cookieid,
createtime,
pv,
NTILE(2) OVER(PARTITION BY cookieid ORDER BY createtime) AS rn1,
NTILE(3) OVER(PARTITION BY cookieid ORDER BY createtime) AS rn2,
NTILE(4) OVER(ORDER BY createtime) AS rn3
FROM user_pv 
ORDER BY cookieid,createtime;

结果如下:hive 窗口函数,hive,大数据,hadoop,Hive窗口函数

3. LAG、LEAD、FIRST_VALUE、LAST_VALUE

讲解这几个窗口函数时还是以实例讲解,首先创建用户访问页面表:user_url

CREATE TABLE user_url (
cookieid string,
createtime string,  --页面访问时间
url string       --被访问页面
);

表中加入如下数据:

cookie1,2021-06-10 10:00:02,url2
cookie1,2021-06-10 10:00:00,url1
cookie1,2021-06-10 10:03:04,1url3
cookie1,2021-06-10 10:50:05,url6
cookie1,2021-06-10 11:00:00,url7
cookie1,2021-06-10 10:10:00,url4
cookie1,2021-06-10 10:50:01,url5
cookie2,2021-06-10 10:00:02,url22
cookie2,2021-06-10 10:00:00,url11
cookie2,2021-06-10 10:03:04,1url33
cookie2,2021-06-10 10:50:05,url66
cookie2,2021-06-10 11:00:00,url77
cookie2,2021-06-10 10:10:00,url44
cookie2,2021-06-10 10:50:01,url55

  • LAG的使用:

LAG(col,n,DEFAULT) 用于统计窗口内往上第n行值。

第一个参数为列名,第二个参数为往上第n行(可选,默认为1),第三个参数为默认值(当往上第n行为NULL时候,取默认值,如不指定,则为NULL)

SELECT cookieid,
createtime,
url,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
LAG(createtime,1,'1970-01-01 00:00:00') OVER(PARTITION BY cookieid ORDER BY createtime) AS last_1_time,
LAG(createtime,2) OVER(PARTITION BY cookieid ORDER BY createtime) AS last_2_time 
FROM user_url;

结果如下:hive 窗口函数,hive,大数据,hadoop,Hive窗口函数

解释:

last_1_time: 指定了往上第1行的值,default为'1970-01-01 00:00:00'  
                 cookie1第一行,往上1行为NULL,因此取默认值 1970-01-01 00:00:00
                 cookie1第三行,往上1行值为第二行值,2021-06-10 10:00:02
                 cookie1第六行,往上1行值为第五行值,2021-06-10 10:50:01
last_2_time: 指定了往上第2行的值,为指定默认值
       cookie1第一行,往上2行为NULL
       cookie1第二行,往上2行为NULL
       cookie1第四行,往上2行为第二行值,2021-06-10 10:00:02
       cookie1第七行,往上2行为第五行值,2021-06-10 10:50:01

  • LEAD的使用:

与LAG相反

LEAD(col,n,DEFAULT) 用于统计窗口内往下第n行值。

第一个参数为列名,第二个参数为往下第n行(可选,默认为1),第三个参数为默认值(当往下第n行为NULL时候,取默认值,如不指定,则为NULL)

SELECT cookieid,
createtime,
url,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
LEAD(createtime,1,'1970-01-01 00:00:00') OVER(PARTITION BY cookieid ORDER BY createtime) AS next_1_time,
LEAD(createtime,2) OVER(PARTITION BY cookieid ORDER BY createtime) AS next_2_time 
FROM user_url;

结果如下:hive 窗口函数,hive,大数据,hadoop,Hive窗口函数


  • FIRST_VALUE的使用:

取分组内排序后,截止到当前行,第一个值。

SELECT cookieid,
createtime,
url,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
FIRST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS first1 
FROM user_url;

结果如下:hive 窗口函数,hive,大数据,hadoop,Hive窗口函数


  • LAST_VALUE的使用:

取分组内排序后,截止到当前行,最后一个值。

SELECT cookieid,
createtime,
url,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
LAST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS last1 
FROM user_url;

结果如下:hive 窗口函数,hive,大数据,hadoop,Hive窗口函数

如果想要取分组内排序后最后一个值,则需要变通一下:

SELECT cookieid,
createtime,
url,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
LAST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS last1,
FIRST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime DESC) AS last2 
FROM user_url 
ORDER BY cookieid,createtime;

注意上述SQL,使用的是 FIRST_VALUE 的倒序取出分组内排序最后一个值!

结果如下:hive 窗口函数,hive,大数据,hadoop,Hive窗口函数

此处要特别注意order  by

如果不指定ORDER BY,则进行排序混乱,会出现错误的结果

SELECT cookieid,
createtime,
url,
FIRST_VALUE(url) OVER(PARTITION BY cookieid) AS first2  
FROM user_url;

结果如下:hive 窗口函数,hive,大数据,hadoop,Hive窗口函数

上述 url2 和 url55 的createtime即不属于最靠前的时间也不属于最靠后的时间,所以结果是混乱的。

4. CUME_DIST

先创建一张员工薪水表:staff_salary

CREATE EXTERNAL TABLE staff_salary (
dept string,
userid string,
sal int
);

表中加入如下数据:

d1,user1,1000
d1,user2,2000
d1,user3,3000
d2,user4,4000
d2,user5,5000

  • CUME_DIST的使用:

此函数的结果和order by的排序顺序有关系。

CUME_DIST:小于等于当前值的行数/分组内总行数。  order默认顺序 :正序

比如,统计小于等于当前薪水的人数,所占总人数的比例。

SELECT 
dept,
userid,
sal,
CUME_DIST() OVER(ORDER BY sal) AS rn1,
CUME_DIST() OVER(PARTITION BY dept ORDER BY sal) AS rn2 
FROM staff_salary;

结果如下:hive 窗口函数,hive,大数据,hadoop,Hive窗口函数

解释:

rn1: 没有partition,所有数据均为1组,总行数为5,
     第一行:小于等于1000的行数为1,因此,1/5=0.2
     第三行:小于等于3000的行数为3,因此,3/5=0.6
rn2: 按照部门分组,dpet=d1的行数为3,
     第二行:小于等于2000的行数为2,因此,2/3=0.6666666666666666

5. GROUPING SETS、GROUPING__ID、CUBE、ROLLUP

这几个分析函数通常用于OLAP中,不能累加,而且需要根据不同维度上钻和下钻的指标统计,比如,分小时、天、月的UV数。

还是先创建一个用户访问表:user_date

CREATE TABLE user_date (
month STRING,
day STRING, 
cookieid STRING 
);

表中加入如下数据:

2021-03,2021-03-10,cookie1
2021-03,2021-03-10,cookie5
2021-03,2021-03-12,cookie7
2021-04,2021-04-12,cookie3
2021-04,2021-04-13,cookie2
2021-04,2021-04-13,cookie4
2021-04,2021-04-16,cookie4
2021-03,2021-03-10,cookie2
2021-03,2021-03-10,cookie3
2021-04,2021-04-12,cookie5
2021-04,2021-04-13,cookie6
2021-04,2021-04-15,cookie3
2021-04,2021-04-15,cookie2
2021-04,2021-04-16,cookie1

  • GROUPING SETS的使用:

grouping sets是一种将多个group by 逻辑写在一个sql语句中的便利写法。

等价于将不同维度的GROUP BY结果集进行UNION ALL。

SELECT 
month,
day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID 
FROM user_date 
GROUP BY month,day 
GROUPING SETS (month,day) 
ORDER BY GROUPING__ID;

注:上述SQL中的GROUPING__ID,是个关键字,表示结果属于哪一个分组集合,根据grouping sets中的分组条件month,day,1是代表month,2是代表day。

结果如下:hive 窗口函数,hive,大数据,hadoop,Hive窗口函数

上述SQL等价于:

SELECT month,
NULL as day,
COUNT(DISTINCT cookieid) AS uv,
1 AS GROUPING__ID 
FROM user_date 
GROUP BY month 

UNION ALL 

SELECT NULL as month,
day,
COUNT(DISTINCT cookieid) AS uv,
2 AS GROUPING__ID 
FROM user_date 
GROUP BY day;

  • CUBE的使用:

根据GROUP BY的维度的所有组合进行聚合。

SELECT 
month,
day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID 
FROM user_date 
GROUP BY month,day 
WITH CUBE 
ORDER BY GROUPING__ID;

结果如下:hive 窗口函数,hive,大数据,hadoop,Hive窗口函数

上述SQL等价于:

SELECT NULL,NULL,COUNT(DISTINCT cookieid) AS uv,0 AS GROUPING__ID FROM user_date

UNION ALL 

SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM user_date GROUP BY month 

UNION ALL 

SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM user_date GROUP BY day

UNION ALL 

SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM user_date GROUP BY month,day;

  • ROLLUP的使用:

是CUBE的子集,以最左侧的维度为主,从该维度进行层级聚合。

比如,以month维度进行层级聚合:

SELECT 
month,
day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID  
FROM user_date 
GROUP BY month,day
WITH ROLLUP 
ORDER BY GROUPING__ID;

结果如下:hive 窗口函数,hive,大数据,hadoop,Hive窗口函数

把month和day调换顺序,则以day维度进行层级聚合:

SELECT 
day,
month,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID  
FROM user_date 
GROUP BY day,month 
WITH ROLLUP 
ORDER BY GROUPING__ID;

结果如下:

hive 窗口函数,hive,大数据,hadoop,Hive窗口函数

这里,根据日和月进行聚合,和根据日聚合结果一样,因为有父子关系,如果是其他维度组合的话,就会不一样。

 

窗口函数实际应用

1. 第二高的薪水

难度简单。

编写一个 SQL 查询,获取 Employee 表中第二高的薪水(Salary)。

+----+--------+
| Id | Salary |
+----+--------+
| 1  | 100    |
| 2  | 200    |
| 3  | 300    |
+----+--------+

例如上述 Employee 表,SQL查询应该返回 200 作为第二高的薪水。如果不存在第二高的薪水,那么查询应返回 null。

+---------------------+
| SecondHighestSalary |
+---------------------+
| 200                 |
+---------------------+

这道题可以用 row_number 函数解决。

参考代码:文章来源地址https://www.toymoban.com/news/detail-768154.html

SELECT
  *
  FROM(
    SELECT Salary, row_number() over(order by Salary desc) rk 
    FROM Employee
  ) t WHERE t.rk = 2;

更简单的代码:

SELECT DISTINCT Salary
FROM Employee
ORDER BY Salary DESC
LIMIT 1 OFFSET 1

OFFSET:偏移量,表示从第几条数据开始取,0代表第1条数据。

2. 分数排名

难度简单。

编写一个 SQL 查询来实现分数排名。

如果两个分数相同,则两个分数排名(Rank)相同。请注意,平分后的下一个名次应该是下一个连续的整数值。换句话说,名次之间不应该有“间隔”。

+----+-------+
| Id | Score |
+----+-------+
| 1  | 3.50  |
| 2  | 3.65  |
| 3  | 4.00  |
| 4  | 3.85  |
| 5  | 4.00  |
| 6  | 3.65  |
+----+-------+

例如,根据上述给定的 Scores 表,你的查询应该返回(按分数从高到低排列):

+-------+------+
| Score | Rank |
+-------+------+
| 4.00  | 1    |
| 4.00  | 1    |
| 3.85  | 2    |
| 3.65  | 3    |
| 3.65  | 3    |
| 3.50  | 4    |
+-------+------+

参考代码:

SELECT Score,
dense_rank() over(order by Score desc) as `Rank`
FROM Scores;

3. 连续出现的数字

难度中等。

编写一个 SQL 查询,查找所有至少连续出现三次的数字。

+----+-----+
| Id | Num |
+----+-----+
| 1  |  1  |
| 2  |  1  |
| 3  |  1  |
| 4  |  2  |
| 5  |  1  |
| 6  |  2  |
| 7  |  2  |
+----+-----+

例如,给定上面的 Logs 表, 1 是唯一连续出现至少三次的数字。

+-----------------+
| ConsecutiveNums |
+-----------------+
| 1               |
+-----------------+

参考代码:

SELECT DISTINCT `Num` as ConsecutiveNums
FROM
  (
    SELECT Num,
    lead(Num, 1, null) over(order by id) n2,
    lead(Num, 2, null) over(order by id) n3 
    FROM Logs
  ) t1
WHERE Num = n2 and Num = n3

4. 连续N天登录

难度困难。

写一个 SQL 查询,  找到活跃用户的 id 和 name,活跃用户是指那些至少连续 5 天登录账户的用户,返回的结果表按照 id 排序。

表 Accounts:

+----+-----------+
| id | name      |
+----+-----------+
| 1  | Winston   |
| 7  | Jonathan  |
+----+-----------+

表 Logins:

+----+-------------+
| id | login_date  |
+----+-------------+
| 7  | 2020-05-30  |
| 1  | 2020-05-30  |
| 7  | 2020-05-31  |
| 7  | 2020-06-01  |
| 7  | 2020-06-02  |
| 7  | 2020-06-02  |
| 7  | 2020-06-03  |
| 1  | 2020-06-07  |
| 7  | 2020-06-10  |
+----+-------------+

例如,给定上面的Accounts和Logins表,至少连续 5 天登录账户的是id=7的用户

+----+-----------+
| id | name      |
+----+-----------+
| 7  | Jonathan  |
+----+-----------+

思路:

  1. 去重:由于每个人可能一天可能不止登陆一次,需要去重

  2. 排序:对每个ID的登录日期排序

  3. 差值:计算登录日期与排序之间的差值,找到连续登陆的记录

  4. 连续登录天数计算:select id, count(*) group by id, 差值(伪代码)

  5. 取出登录5天以上的记录

  6. 通过表合并,取出id对应用户名

参考代码:

SELECT DISTINCT b.id, name
FROM
  (SELECT id, login_date,
    DATE_SUB(login_date, ROW_NUMBER() OVER(PARTITION BY id ORDER BY login_date)) AS diff 
   FROM(SELECT DISTINCT id, login_date FROM Logins) a) b
INNER JOIN Accounts ac
ON b.id = ac.id
GROUP BY b.id, diff
HAVING COUNT(b.id) >= 5

注意点:

  1. DATE_SUB的应用:DATE_SUB (DATE, X),注意,X为正数表示当前日期的前X天;

  2. 如何找连续日期:通过排序与登录日期之间的差值,因为排序连续,因此若登录日期连续,则差值一致;

  3. GROUP BY和HAVING的应用:通过id和差值的GROUP BY,用COUNT找到连续天数大于5天的id,注意COUNT不是一定要出现在SELECT后,可以直接用在HAVING中

5. 给定数字的频率查询中位数

难度困难。

Numbers 表保存数字的值及其频率。

+----------+-------------+
|  Number  |  Frequency  |
+----------+-------------|
|  0       |  7          |
|  1       |  1          |
|  2       |  3          |
|  3       |  1          |
+----------+-------------+

在此表中,数字为 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 3,所以中位数是 (0 + 0) / 2 = 0。

+--------+
| median |
+--------|
| 0.0000 |
+--------+

请编写一个查询来查找所有数字的中位数并将结果命名为 median 。

参考代码:

select
avg(cast(number as float)) as median
from
  (
    select Number,
    Frequency,
    sum(Frequency) over(order by Number) - Frequency as prev_sum,
    sum(Frequency) over(order by Number) as curr_sum 
    from Numbers
  ) t1, (
    select sum(Frequency) as total_sum 
    from Numbers
  ) t2
where
t1.prev_sum <= (cast(t2.total_sum as float) / 2) 
and
t1.curr_sum >= (cast(t2.total_sum as float) / 2)

到了这里,关于Hive窗口函数全解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Hive 窗口函数大全

    目录 窗口函数概述 窗口序列函数 row_number dense_rank 窗口边界 滑动窗口 lag 获取上一行数据 lead 获取下一行数据 窗口专用计算函数 sum累加函数 max最大值 min最小值 avg平均值 count累计次数 first_value首行值 last_value末行值 cume_dist分布统计 percent_rank 秩分析函数 nitle数据切片函数

    2024年02月15日
    浏览(38)
  • (07)Hive——窗口函数详解

            窗口函数可以拆分为【窗口+函数】。窗口函数官网指路: LanguageManual WindowingAndAnalytics - Apache Hive - Apache Software Foundation https://cwiki.apache.org/confluence/display/Hive/LanguageManual%20WindowingAndAnalytics 窗口: over(),指明函数要处理的 数据范围 函数: 指明函数 计算逻辑 window_nam

    2024年02月19日
    浏览(39)
  • Hive窗口函数-lead/lag函数

    前面我们学习的first_value和last_value 取的是排序后的数据截止当前行的第一行数据和最后一行数据 Lag和Lead分析函数可以在一次查询中取出当前行后N行和前N行的数据,虽然可以不用排序,但是往往只有在排序的场景下取前面或者后面N 行数据才有意义 这种操作可以代替表的自

    2024年02月16日
    浏览(62)
  • Hive 窗口函数超详细教程

    在 SQL 开发中,有时我们可以使用聚合函数将多行数据按照规则聚集在一行,但是我们又想同时得到聚合前的数据,单纯的聚合函数是做不到的,怎么办呢?这时我们的窗口函数就闪亮登场了。窗口函数兼具分组和排序功能,又叫分析函数! 语法如下:

    2024年02月04日
    浏览(40)
  • hive窗口函数计算累加值

    rows是物理窗口,是哪一行就是哪一行,与当前行的值(order by key的key的值)无关,只与排序后的行号相关,就是我们常规理解的那样。 range是逻辑窗口,与当前行的值有关(order by key的key的值),在key上操作range范围。 简要:如果当前行的值有重复的,range会默认把重复的值加

    2024年02月11日
    浏览(34)
  • hive窗口分析函数使用详解系列二之分组排序窗口函数

    我们讨论面试中各大厂的SQL算法面试题,往往核心考点就在于窗口函数,所以掌握好了窗口函数,面对SQL算法面试往往事半功倍。 已更新第一类聚合函数类,点击这里阅读 hive窗口函数聚合函数类 本节介绍Hive聚合函数中的第二类聚合函数:分组排序窗口函数。 这些函数的用

    2024年04月13日
    浏览(36)
  • Hive之窗口函数lag()/lead()

    lag()与lead函数是跟偏移量相关的两个分析函数 通过这两个函数可以在一次查询中取出同一字段的前N行的数据(lag)和后N行的数据(lead)作为独立的列,从而更方便地进行进行数据过滤,该操作可代替表的自联接,且效率更高 lag()/lead() lag(col,n,DEFAULT)用于统计窗口内往上第n行值  第

    2024年02月15日
    浏览(47)
  • hive窗口分析函数使用详解系列一

    Hive的聚合函数衍生的窗口函数在我们进行数据处理和数据分析过程中起到了很大的作用 在Hive中,窗口函数允许你在结果集的行上进行计算,这些计算不会影响你查询的结果集的行数。 Hive提供的窗口和分析函数可以分为聚合函数类窗口函数,分组排序类窗口函数,偏移量计

    2024年04月08日
    浏览(39)
  • Hive学习---4、函数(单行函数、高级聚合函数、炸裂函数、窗口函数)

    1.1 函数简介 Hive会将常用的逻辑封装成函数给用户进行使用,类似java中的函数。 好处:避免用户反复写逻辑,可以直接拿来使用 重点:用户需要知道函数叫什么,能做什么 Hive提供了大量的内置函数,按照其特点大致可分为如下几类:单行函数、聚合函数、炸裂函数、窗口

    2024年02月08日
    浏览(60)
  • [hive] 窗口函数 ROW_NUMBER()

    在 Hive SQL 中, ROW_NUMBER() 是一个用于生成行号的窗口函数。 它可以为 查询结果集中的每一行分配一个唯一的行号 。 以下是 ROW_NUMBER() 函数的基本语法: PARTITION BY 子句可选,用于指定 分区列 ,它将结果集划分为不同的分区。 每个分区内的行都会有独立的行号计数,即行号

    2024年02月07日
    浏览(38)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包