信号完整性-我的均衡之CTLE学习笔记

这篇具有很好参考价值的文章主要介绍了信号完整性-我的均衡之CTLE学习笔记。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1、写在前面

相信大家在进行信号完整学习时,遇到的最大的困惑就是不知道何从下手,当初我也跟你们有同样的困惑,这也是我写这篇文章的目的之一。一是希望自己的学习过程有个记录,通过文章来整理自己的思路;二是希望这篇文章对你有一点帮助。

如何利用软件进行上手操作,能够进行基本的仿真设置,忽略背后那一堆公式的推导,快速地得出评估结果是非常重要的,这就是工程思维。当然,在这之后你仍然需要去理解背后的原理,只有这样才能提高自己的水平。

但是而对于初学者而言,最大的困难就在第一步。今天我要跟大家分享的是关于CTLE的均衡技术在ADS通道仿真中如何设置以及仿真的问题。

对于CTLE相信大家都听过,资料上应该也看过,但是若要问怎么设置CTLE的参数,这些参数代表的意思是什么估计会难倒一片,再问拉普拉斯变换又是什么,估计直接晕倒在厕所了………

好了,言归正传,在进行CTLE介绍之前首先介绍一下通道对信号的频域和时域上的影响。

二、通道的频域与时域特性

考虑一段长距离传输线,会对信号会带来什么问题呢?我们可以从频域和时域上来分析。如图所示,一段长10英寸的差分线,随着频率的提高,S21基本是线性增大的,在12.5GHz处的插损达到了17dB。

再看时域特性,输入信号原本是一个理想的方波,经过这段长距离走线后,输出电压的幅度降低了,同时上升沿和下降沿变的很缓慢,特别是下降沿有拖尾现象,这会对邻近的符号造成干扰,即我们常说的ISI(码间干扰)。

ISI的本质是通道对高频分量的衰减远大于低频分量的衰减。如果从传输线的等效LC模型来看,就是电容和电感负载对信号的影响。电容和电感都有一个充放电的时间,因此会使得上身沿和下降沿变缓。

线性均衡ctle,仿真,电磁仿真,物联网,制造,仿真,CAE,5G

线性均衡ctle,仿真,电磁仿真,物联网,制造,仿真,CAE,5G

8英寸长的差分线损耗曲线

线性均衡ctle,仿真,电磁仿真,物联网,制造,仿真,CAE,5G

10英寸长的差分线对时域脉冲信号的电压响应曲线

如果进一步研究,我们再回到频域,如下图所示。输入电压的频谱分量和输出电压的频谱分量有很大区别。在10GHz以内,两者的频谱分量幅度差别不是很大,大约在5dB以内,但是随着频率的提高,输出信号的频谱分量幅度和输入信号之间的差距越来越大,在图中的4个mark点分别是11dB---16dB-----20dB-----23dB。

也就是说,通道对高频分量的衰减远大于低频分量,而且随着频率的提高,这种差距是越来越大,这是造成ISI的根源。 

线性均衡ctle,仿真,电磁仿真,物联网,制造,仿真,CAE,5G

输出电压与输入电压的频谱图

三、通道对眼图的影响

高速信号都是以眼图来评估其质量,那么试想一下,如果一个25Gbps的信号经过这段长走线,其眼图会是什么样呢?这可以通过在ADS中搭建一个简单的通道仿真来看,如下图所示。TX是信号源,速率是25Gbps,中间经过一段8英寸长的差分线传输线,到达接收端RX元件,通过眼图探针测量收端的眼图。

线性均衡ctle,仿真,电磁仿真,物联网,制造,仿真,CAE,5G

通道仿真原理图

启动运行按钮,仿真结果如下图所示,我们看到收端的眼图已经完全闭合,带来了非常严重的信号完整性问题,如果收端不做任何处理,那么接收端收到的信号将全是误码。

线性均衡ctle,仿真,电磁仿真,物联网,制造,仿真,CAE,5G

CTLE关闭

而当把收端的CTLE功能打开时,神奇的一幕出现了,如下图所示,原本闭合的眼图张开了,眼高达到了402mV。是不是很兴奋?兴奋的是不是想了解CTLE是个什么东西。

线性均衡ctle,仿真,电磁仿真,物联网,制造,仿真,CAE,5G

CTLE 开启

四、什么是CTLE

到这一步我们看到了CTLE功能的神奇,能够将原本闭合的眼图打开,也就是说能够消除ISI的部分影响。那么CTLE究竟是什么呢?

CTLE是Continuous Time Linear Equalization的简称,即连续时间线性均衡器,是在高速串行接收链路中常用的一种均衡技术。

线性均衡ctle,仿真,电磁仿真,物联网,制造,仿真,CAE,5G

典型的高速串行收发链路架构

CTLE本质上是一个高通滤波器,实现方式有无源和有源两种方式。(不想看公式的可以忽略)

线性均衡ctle,仿真,电磁仿真,物联网,制造,仿真,CAE,5G

无源CTLE的实现

线性均衡ctle,仿真,电磁仿真,物联网,制造,仿真,CAE,5G

有源CTLE的实现

5、ADS中的CTLE及参数设置

那么在ADS中该如何设置它的参数呢?在ADS中的通道仿真中,对于RX元件有CTLE、FFE、DFE三种均衡设置方式。如下图所示:

线性均衡ctle,仿真,电磁仿真,物联网,制造,仿真,CAE,5G

通道仿真中的RX元件

勾选Enable,点击Edit按钮,出现如下对话框,有zeros和poles,pre-factor。这是什么鬼东西呢?大家都听说过CTLE本质上是一个高通滤波器,这里的Zeros和poles分别是这个高通滤波器的零点和极点,也就是前面那些公式里面出现的wz和wp,pre-factor是滤波器传递函数的系数。

线性均衡ctle,仿真,电磁仿真,物联网,制造,仿真,CAE,5G

Zeros和poles

对于高通滤波器,做过射频的都知道,以前都是通过设置其3dB带宽,截止频率和衰减等指标可以获得一个高通滤波器。比如下图所示,就是一个截止频率为0.8GHz,3dB带宽是1GHz的巴特沃斯高通滤波器,其频率响应曲线如下图,含义非常的清晰。

线性均衡ctle,仿真,电磁仿真,物联网,制造,仿真,CAE,5G

线性均衡ctle,仿真,电磁仿真,物联网,制造,仿真,CAE,5G

巴特沃斯高通滤波器

而在这里,不是这样设置的,高通滤波器的特性是通过零点和极点来控制的。以前习惯于频域上的设置,现在是时域上的设置方法。如果要进一步了解零点和极点的概念,你需要去了解滤波器的传递函数和拉普拉斯变换(估计会晕倒一大片……….),这在后面进一步讲。

好了,言归正传,到这里大家想知道的就是我如何在ADS仿真中,设置一个CTLE的参数来提高信号质量,以便应用于我们的实际项目中,节约调试时间。以这个通道仿真为例,CTLE的参数设置如下:

线性均衡ctle,仿真,电磁仿真,物联网,制造,仿真,CAE,5G

CTLE参数设置

零点和极点的单位是rad/s,不是Hz,因此需要设置成角频率的形式,而且是负数,即w=-2πf。在ADS中,CTLE的传递函数公式如下

H(s)= Pre-factor*N(s)/D(s)

其中

N(s)=(s-Zero[1]) * (s-Zero[2]) * ...
D(s)=(s-Pole[1]) * (s-Pole[2]) * ...

Zero[1]、Zero[2]、Zero[3]…. Zero[n]代表n个零点,Pole[1]、Pole[2]、Pole[3]….. Pole[n]代表n个极点。

当传递函数的分子为0时对应的频点就叫零点,当传递函数的分母为0时对应的频点就是极点。

本例中由1个零点和2个极点构成,还有一个前置系数。写成传递函数的形式就是

H(s)= Pre-factor*(s+wz0)/(s+wp1)*(s+wp2)

其中,wz0=-2*pi*2.6e9,wp1=-2*pi*10e9,wp2=-2*pi*13e9。
Pre-factor=Adc*wp1*wp2/wz0,在ADS中,Adc默认取1,正常是在[0,1],代表了频率为0时的直流增益。

也就是说零点对应的频率为2.6GHz,极点1对应的频率为10GHz,极点2对应的频率为13GHz,所以前置系数Pre-factor=2*pi*50e9。那么这里我们要追问两个问题:

第一、参数设置对应的频率响应是怎么样的?

第二、为什么CTLE能够使眼图张开?

线性均衡ctle,仿真,电磁仿真,物联网,制造,仿真,CAE,5G

CTLE的频率响应

如上图所示,就是上述CTLE的频率响应曲线。我们看到这条曲线其实前半部分是一个高通滤波器,后半部分增益又是急剧下降的,这跟我们传统的高通滤波器是不一样的,如上图那个的那个巴特沃斯高通滤波器。就这条曲线本身来说,其实更像是一条带通滤波器。

正是因为CTLE利用的就是前半部分的高通特性,所以习惯上就称CTLE为高通滤波器。另外从图中还可以看出,大概在1GHz以后滤波器的增益开始有明显的增大,1GHz以内增益基本都是保持不变的,大概在11GHz附件增大到peak值7dB。然后又开始急剧衰减。

而且我们发现,零点和极点并不完全对应图中的频率拐点。比如零点我们设置的是2.6GHz,但是频率从1GHz以后就开始往上拐了。两个极点10GHz和13GHz也不是对应图中的增益peak值,而是处于peak值的两边。但有一点可以肯定,零点和极点一起控制了这条曲线的形状。

再比如,在USB3.0中,CTLE的传递函数和频率响应曲线如下所示,从图中我们也可以看到类似的规律。

线性均衡ctle,仿真,电磁仿真,物联网,制造,仿真,CAE,5G

USB3.0-CTLE传递函数

点击完整阅读全文:信号完整性-我的均衡之CTLE学习笔记

DDR信号完整性设计仿真资料免费下载文章来源地址https://www.toymoban.com/news/detail-768159.html

到了这里,关于信号完整性-我的均衡之CTLE学习笔记的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 信号完整性相关基础知识

    一、GHz传输链路信号损耗的特征,高频和低频分量信号损耗问题 • 1. 信号沿 FR4 传播,两种有功损耗 : 导体损耗和介质损耗两种损耗的高频衰减大于低频衰减。当信号传播 4in 长时, 8GHz 以上高频分量的功率衰减量大于 50 %,而对低频分量的影响却小得多。 • 2.FR4 板上 4i

    2024年02月08日
    浏览(41)
  • 要画好PCB,先学好信号完整性!

    要画好PCB,先学好信号完整性! 在电子设计领域,高性能设计有其独特挑战。 1 高速设计的诞生 近些年,日益增多的高频信号设计与稳步增加的电子系统性能紧密相连。 随着系统性能的提高,PCB设计师的挑战与日俱增:更微小的晶粒,更密集的电路板布局,更低功耗的芯片

    2024年02月19日
    浏览(41)
  • 轨道交通信号安全完整性等级(SIL)

    轨道交通行业中,对于信号系统、车辆子系统等安全相关的系统有安全完整性(SIL)等级的要求,需要进行通用产品层安全评估和工程特定应用项目安全评估,已经形成了行业共识。对于初次了解SIL的人,在实际应用中存在着对SIL的错误理解,并且不恰当地应用SIL。本文解答

    2024年02月04日
    浏览(49)
  • OCP浸没式液冷基本规范(概述和信号完整性部分)

    数据中心行业主要考虑两种类型的液体冷却技术来推动节能和可持续发展,分别是冷板式和浸没式,每一种技术里的液体又包含单相和双相两种规格: 冷板技术与浸没技术的主要区别之一是,在浸没的情况下,液体与 IT 设备直接接触。目前,有大量液体被用于单相和两相浸

    2024年02月08日
    浏览(43)
  • 【笔记】Helm-3 主题-5 Helm来源和完整性

    Helm来源和完整性 Helm有一个来源工具帮助chart用户检测包的完整性和来源。使用基于PKI,GnuPG及流行包管理器的行业标准工具,Helm可以生成和检测签名文件。 概述 完整性是通过比较chart的出处记录来建立的。出处记录存储在出处文件,和打包好的chart放在一起。比如,如果有

    2024年01月18日
    浏览(34)
  • Mysql列的完整性约束(调整列的完整性约束)

    目录 一、 主键PK、外键FK和 唯一键UK 新增 删除         修改         修改默认值DEFAULT、自增长和非空NK 总结 alter table [table_name] add constraint [constraint_name] [unique key| primary key|foreign key] ([column_name])         1.通过如下命令查询键值的约束名:                 

    2024年02月01日
    浏览(54)
  • mysql索引--普通索引,唯一索引,主键索引,参照完整性约束,数据完整性约束

    -- 方法1:create index -- 对employee表的员工部门号列创建普通索引depart_ind -- create index depart_ind on employees(员工部门号); -- 对employee表的姓名和地址列创建复合索引ad_ind; -- create index ad_ind on employees(姓名,地址); -- 对departments表的部门名称列创建唯一索引un_ind; -- create unique index un_ind

    2023年04月21日
    浏览(45)
  • 5.1 实体完整性

    第5章 数据库完整性笔记 定义 : 完整性 :确保数据的正确性和相容性。 正确性 :数据与现实世界语义相符、反映实际状况。 相容性 :同一对象在数据库的不同关系表中数据逻辑上是一致的。 示例 : 学号唯一性。 性别限定为男或女。 本科学生年龄为14-50之间的整数。 学

    2024年02月06日
    浏览(45)
  • 2.4数据完整性验证

    1.数据完整性概述 数据完整性指数据不会被非授权更改或破坏,如篡改、删除、插入等 主要类型:带恢复的连接完整性、不带恢复的连接完整性、选择字段连接完整性、无连接完整性、选择字段无连接完整性 主要实现技术:基于密码技术的完整性保护和基于非密码技术的完

    2024年02月08日
    浏览(54)
  • 数据安全—数据完整性校验

    1、数据安全保障三要素即 保密性 完整性、可用性 机密性:要求数据不被他人轻易获取,需要进行数据加密。 完整性:要求数据不被他人随意修改,需要进行签名技术 可用性:要求服务不被他人恶意攻击,需要进行数据校验 2、为保证数据完整性如下图所示 1)将要提交的参

    2024年02月09日
    浏览(51)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包