R语言【rgbif】——name_backbone()和name_backbone_verbose()在 GBIF 分类树中查找名称。

这篇具有很好参考价值的文章主要介绍了R语言【rgbif】——name_backbone()和name_backbone_verbose()在 GBIF 分类树中查找名称。。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Package rgbif version 3.7.8


Parameters

name_backbone(
  name,
  rank = NULL,
  kingdom = NULL,
  phylum = NULL,
  class = NULL,
  order = NULL,
  family = NULL,
  genus = NULL,
  strict = FALSE,
  verbose = FALSE,
  start = NULL,
  limit = 100,
  curlopts = list()
)

name_backbone_verbose(
  name,
  rank = NULL,
  kingdom = NULL,
  phylum = NULL,
  class = NULL,
  order = NULL,
  family = NULL,
  genus = NULL,
  strict = FALSE,
  start = NULL,
  limit = 100,
  curlopts = list()
)

参数【name】:(字符)可能带有作者姓名的学名全称(必填)。

参数【rank】:(字符)作为等级枚举给出的等级。可选。

参数【kingdom】:(字符)如果提供,默认情况下,如果没有找到与名称直接匹配的匹配项,也会尝试与此匹配。可选。

参数【phylum】:(字符)如果提供,默认情况下,如果没有找到与名称直接匹配的匹配项,也会尝试与此匹配。可选。

参数【class】:(字符)如果提供,默认情况下,如果没有找到与名称直接匹配的匹配项,也会尝试与此匹配。可选。

参数【order】:(字符)如果提供,默认情况下,如果没有找到与名称直接匹配的匹配项,也会尝试与此匹配。可选。

参数【family】:(字符)如果提供,默认情况下,如果没有找到与名称直接匹配的匹配项,也会尝试与此匹配。可选。

参数【genus】:(字符)如果提供,默认情况下,如果没有找到与名称直接匹配的匹配项,也会尝试与此匹配。可选。

参数【strict】:(逻辑)如果为 TRUE,则(模糊)只匹配给定名称,但绝不匹配上层分类中的分类群(可选)。

参数【verbose】:(逻辑),该函数是否会返回更多(更不可靠)的结果。参见函数 name_backbone_verbose()

参数【start】:开始的记录编号。默认值:0,与参数【limit】结合使用可翻阅结果。

参数【limit】:要返回的记录数。默认值:100。最大值 1000

参数【curlopts】:传递给 HttpClient 的指定 curl 选项的列表。请参阅 curl::curl_options 了解 curl 选项。

如果没有匹配到结果,GBIF 会返回一个 data.frame,其中包含 synonymconfidencematchType='NONE' 三列。


Value

对于 name_backbone,是一个包含多列的单一分类群的 data.frame

对于 name_backbone_verbosedata.frame 中的模糊匹配结果数量较多。

您还将以 input_name、input_rank、input_kingdom 等列的形式获得输入的参数【name】参数【rank】参数【kingdom】参数【phylum】等信息。文章来源地址https://www.toymoban.com/news/detail-768565.html


Examples

> name_backbone(name='Helianthus annuus', kingdom='plants')

# A tibble: 1 × 24
  usageKey scientificName  canonicalName rank  status confidence matchType kingdom
*    <int> <chr>           <chr>         <chr> <chr>       <int> <chr>     <chr>  
1  9206251 Helianthus ann… Helianthus a… SPEC… ACCEP…        100 EXACT     Plantae
# ℹ 16 more variables: phylum <chr>, order <chr>, family <chr>, genus <chr>,
#   species <chr>, kingdomKey <int>, phylumKey <int>, classKey <int>,
#   orderKey <int>, familyKey <int>, genusKey <int>, speciesKey <int>,
#   synonym <lgl>, class <chr>, verbatim_name <chr>, verbatim_kingdom <chr>

> name_backbone(name='Helianthus', rank='genus', kingdom='plants')

# A tibble: 1 × 23
  usageKey scientificName canonicalName rank  status  confidence matchType kingdom
*    <int> <chr>          <chr>         <chr> <chr>        <int> <chr>     <chr>  
1  3119134 Helianthus L.  Helianthus    GENUS ACCEPT…         98 EXACT     Plantae
# ℹ 15 more variables: phylum <chr>, order <chr>, family <chr>, genus <chr>,
#   kingdomKey <int>, phylumKey <int>, classKey <int>, orderKey <int>,
#   familyKey <int>, genusKey <int>, synonym <lgl>, class <chr>,
#   verbatim_name <chr>, verbatim_rank <chr>, verbatim_kingdom <chr>

> name_backbone(name='Poa', rank='genus', family='Poaceae')

# A tibble: 1 × 23
  usageKey scientificName canonicalName rank  status  confidence matchType kingdom
*    <int> <chr>          <chr>         <chr> <chr>        <int> <chr>     <chr>  
1  2704173 Poa L.         Poa           GENUS ACCEPT…        100 EXACT     Plantae
# ℹ 15 more variables: phylum <chr>, order <chr>, family <chr>, genus <chr>,
#   kingdomKey <int>, phylumKey <int>, classKey <int>, orderKey <int>,
#   familyKey <int>, genusKey <int>, synonym <lgl>, class <chr>,
#   verbatim_name <chr>, verbatim_rank <chr>, verbatim_family <chr>

到了这里,关于R语言【rgbif】——name_backbone()和name_backbone_verbose()在 GBIF 分类树中查找名称。的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 模型修改之替换骨干网络(backbone)

    说实话这篇文章是没有在计划之内的,但是有读者说让我出一个使用transformer替换其他骨干网络的示例,想了想,最近好像没啥状态的,论文有点看不下去,正好整理一下自己的经验把。说实话替换骨干网络说简单也简单,说麻烦也麻烦,替换骨干网络个人感觉就是一个debu

    2024年02月09日
    浏览(35)
  • YOLOv5的Backbone详解

    YOLOv5的Backbone设计 在上一篇文章《YOLOV5的anchor设定》中我们讨论了anchor的产生原理和检测过程,对YOLOv5的网络结构有了大致的了解。接下来,我们将聚焦于YOLOv5的Backbone,深入到底层源码中体会v5的Backbone设计。 yolov5s的backbone部分如上,其网络结构使用yaml文件配置,通过./mo

    2024年02月06日
    浏览(33)
  • R语言 Error in make.names(col.names, unique = TRUE) : invalid multibyte string at ‘<b1><ea><cc><e2>‘

    R语言导入CSV文件的时候,代码如下: 出现以下报错: Error in make.names(col.names, unique = TRUE) : invalid multibyte string at \\\'b1eacce2\\\' 报错的解决方法如下: 报错的原因是,导入文件的编码格式不是read.csv()函数的默认格式。我们可以使用windows自带的“记事本/notepad”软件来查看格式,打

    2024年02月02日
    浏览(47)
  • 简要介绍 | Backbone与Baseline的区别

    注1:本文系“简要介绍”系列之一,仅从概念上对Backbone和Baseline进行非常简要的介绍,不适合用于深入和详细的了解。 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-AsvT5fzp-1687255617644)(null)] 在深度学习和计算机视觉领域, Backbone 和 Baseline 是两

    2024年02月09日
    浏览(48)
  • YOLOv7 Backbone| 原文源码详解

    YOLOv7 Backbone结构详解 在之前的文章中,我们以YOLOv5为对象,详细解剖了一只麻雀的内部构造,包括anchor机制、backbone的结构、neck的结构和head的结构。在本篇文章中,我们将以YOLOv7v0.1版本的代码为目标,结合作者团队的YOLOv7原文,详细介绍一下其骨架网络的整体架构及各部分

    2024年03月24日
    浏览(39)
  • [读论文][backbone]Knowledge Diffusion for Distillation

    DiffKD 摘要 The representation gap between teacher and student is an emerging topic in knowledge distillation (KD). To reduce the gap and improve the performance, current methods often resort to complicated training schemes, loss functions, and feature alignments, which are task-specific and feature-specific. In this paper, we state that the essence of the

    2024年02月08日
    浏览(52)
  • YOLOv5改进之替换Backbone为ResNet50

    BestYOLO:https://github.com/WangRongsheng/BestYOLO BestYOLO是一个以科研和竞赛为导向的最好的YOLO实践框架! 目前BestYOLO是一个完全基于YOLOv5 v7.0 进行改进的开源库,该库将始终秉持以落地应用为导向,以轻便化使用为宗旨,简化各种模块的改进。目前已经集成了基于torchvision.models 模型为

    2024年02月05日
    浏览(48)
  • yolov5 backbone 更改为 mobilevit(即改即用)

    在大佬的博客补充了一些小问题,按照如下修改,你的代码就能跑起来了 使用MobileViT替换YOLOv5主干网络 收费教程:YOLOv5更换骨干网络之 MobileViT-S / MobileViT-XS / MobileViT-XXS MobileViT模型简介 MobileViT、MobileViTv2、MobileViTv3学习笔记(自用) MobileViTv1、MobileViTv2、MobileViTv3网络详解 我

    2024年02月09日
    浏览(44)
  • 【YOLOv5】Backbone、Neck、Head各模块详解

    Yolov5是一种目标检测算法,采用基于Anchor的检测方式,属于单阶段目标检测方法。相比于Yolov4,Yolov5有着更快的速度和更高的精度,是目前业界领先的目标检测算法之一。 Yolov5基于目标检测算法中的one-stage方法,其主要思路是将整张图像划分为若干个网格,每个网格预测出该

    2024年02月03日
    浏览(34)
  • YOLOV5的backbone改为shuffleNet,并进行效果对比

    近期,想尝试将YOLOV5的backbone改为ShuffleNetv2这类的轻量级网络,想和yolov5s进行对比,话不多少,正文开始 拉取YOLOV5的最新代码,代码链接如下:YOLOV5 2.1数据集下载 这里我们准备VOC数据集,如果不想提现下载也没关系,训练时会自动下载,但是这里还是建议提前准备好,下载

    2024年02月06日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包