环境
Linux:Hadoop2.x
Windows:jdk1.8、Maven3、IDEA2021
步骤
编程分析
编程分析包括:
1.数据过程分析:数据从输入到输出的过程分析。
2.数据类型分析:Map的输入输出类型,Reduce的输入输出类型;
编程分析决定了我们该如何编写代码。
新建Maven工程
打开IDEA–>点击File–>New–>Project
选择Maven–>点击Next
选择一个空目录作为项目目录,目录名称例如:wordcount,建议目录路径不包含中文和空格,点击Finish
添加依赖
修改pom.xml
,添加如下依赖
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.7.3</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.7.3</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>2.7.3</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-core</artifactId>
<version>2.7.3</version>
</dependency>
</dependencies>
加载依赖
新建包
在src\main\java
目录下,新建包:org.example
填入org.example
,效果如下:
新建类
在org.example
包下,新建出三个类,分别为:MyMapper
、MyReducer
、MyMain
,效果如下:
编写Map程序
编辑MyMapper
类,步骤如下:
1.继承Mapper
2.重写map()方法
3.编写Map逻辑代码:
1.v1由Text类型转换为String
2.按空格进行分词:split(" ")方法
3.输出k2, v2
编写Reduce程序
编辑MyReducer
类,步骤如下:
1.继承Reducer
2.重写reduce()方法
3.编写Reduce逻辑代码:
1.k4 = k3
2.v4 = v3元素的和
3.输出k4, v4
编写Main程序(Driver程序)
编辑MyMain
类,步骤如下:
1. 创建一个job和任务入口(指定主类)
2. 指定job的mapper和输出的类型<k2 v2>
3. 指定job的reducer和输出的类型<k4 v4>
4. 指定job的输入和输出路径
5. 执行job
思考
代码编写完成后,可以先在Windows本地运行吗?
打包
看到BUILD SUCCESS
为打包成功
打包后得到的jar包,在项目的target目录下
提交到Hadoop集群运行
1.将上一步打包得到的jar包,上传到linux
2.启动hadoop集群
start-all.sh
3.运行jar包
从Linux本地上传一个文件到hdfs
hdfs dfs -put 1.txt /input/1.txt
hdfs查看输入数据
运行jar包
hadoop jar wordcount-1.0-SNAPSHOT.jar org.example.MyMain /input/1.txt /output/wordcount
正常运行过程输出如下:
[hadoop@node1 ~]$ hadoop jar wordcount-1.0-SNAPSHOT.jar org.example.MyMain /input/1.txt /output/wordcount
22/03/29 00:23:59 INFO client.RMProxy: Connecting to ResourceManager at node1/192.168.193.140:8032
22/03/29 00:23:59 WARN mapreduce.JobResourceUploader: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
22/03/29 00:24:00 INFO input.FileInputFormat: Total input paths to process : 1
22/03/29 00:24:00 INFO mapreduce.JobSubmitter: number of splits:1
22/03/29 00:24:01 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1648484275192_0001
22/03/29 00:24:01 INFO impl.YarnClientImpl: Submitted application application_1648484275192_0001
22/03/29 00:24:01 INFO mapreduce.Job: The url to track the job: http://node1:8088/proxy/application_1648484275192_0001/
22/03/29 00:24:01 INFO mapreduce.Job: Running job: job_1648484275192_0001
22/03/29 00:24:08 INFO mapreduce.Job: Job job_1648484275192_0001 running in uber mode : false
22/03/29 00:24:08 INFO mapreduce.Job: map 0% reduce 0%
22/03/29 00:24:12 INFO mapreduce.Job: map 100% reduce 0%
22/03/29 00:24:17 INFO mapreduce.Job: map 100% reduce 100%
22/03/29 00:24:19 INFO mapreduce.Job: Job job_1648484275192_0001 completed successfully
22/03/29 00:24:19 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=55
FILE: Number of bytes written=237261
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=119
HDFS: Number of bytes written=25
HDFS: Number of read operations=6
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=1
Launched reduce tasks=1
Data-local map tasks=1
Total time spent by all maps in occupied slots (ms)=2290
Total time spent by all reduces in occupied slots (ms)=2516
Total time spent by all map tasks (ms)=2290
Total time spent by all reduce tasks (ms)=2516
Total vcore-milliseconds taken by all map tasks=2290
Total vcore-milliseconds taken by all reduce tasks=2516
Total megabyte-milliseconds taken by all map tasks=2344960
Total megabyte-milliseconds taken by all reduce tasks=2576384
Map-Reduce Framework
Map input records=2
Map output records=4
Map output bytes=41
Map output materialized bytes=55
Input split bytes=94
Combine input records=0
Combine output records=0
Reduce input groups=3
Reduce shuffle bytes=55
Reduce input records=4
Reduce output records=3
Spilled Records=8
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=103
CPU time spent (ms)=1200
Physical memory (bytes) snapshot=425283584
Virtual memory (bytes) snapshot=4223356928
Total committed heap usage (bytes)=277348352
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=25
File Output Format Counters
Bytes Written=25
[hadoop@node1 ~]$
查看输出结果
思考
-
如果运行过程报如下错误,该如何解决?
-
代码还可以优化吗?如何优化?文章来源:https://www.toymoban.com/news/detail-768708.html
完成!enjoy it!文章来源地址https://www.toymoban.com/news/detail-768708.html
到了这里,关于MapReduce WordCount程序实践(IDEA版)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!