STM32实战之深入理解I²C通信协议

这篇具有很好参考价值的文章主要介绍了STM32实战之深入理解I²C通信协议。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

I²C的物理层

I²C的协议层

I²C特点

I²C 总线时序图

软件模拟I²C时序分享

软件模拟IIC驱动AT24C02分享

例程简介

例程分享

STM32的I²C外设


IIC(Inter-Integrated Circuit),也称为I²C或TWI(Two-Wire Interface),是一种广泛使用的串行总线接口,用于连接低速度的集成电路。这种通信协议非常适合在单个主设备和多个从设备之间进行短距离通信。

I²C的物理层

IIC通信只需要两根线:一个是串行数据线(SDA),另一个是串行时钟线(SCL)。这两根线都需要通过上拉电阻连接到正电源,以确保在没有信号驱动时,线路能够保持在高电平状态。

STM32实战之深入理解I²C通信协议,stm32,MCU,IIC,软件模拟,例程分享

I²C的协议层

IIC协议定义了一系列的信号,包括开始信号、停止信号、数据有效性和应答信号。开始信号和停止信号用于标识一次通信的开始和结束,而数据有效性确保数据在时钟信号稳定时被读取。应答信号则是从设备对接收数据的确认。

I²C特点

  1. 两线制接口:I2C通信只需要两根线,一根是串行数据线(SDA),另一根是串行时钟线(SCL),所以I2C为半双工通信。
  2. 多主设备:I2C允许多个主设备(master)和多个从设备(slave)在同一总线上通信。
  3. 地址识别:每个从设备都有一个唯一的地址,主设备通过这个地址与特定的从设备通信。
  4. 同步通信:I2C是一种同步通信协议,数据传输是由时钟信号(SCL)来同步的。
  5. 支持多速率:I2C支持多种不同的数据传输速率,包括标准模式(100kbps)、快速模式(400kbps)、快速模式加(1Mbps)和高速模式(3.4Mbps)。
  6. 软件可配置:I2C设备的地址和一些功能可以通过软件进行配置。
  7. 简单易用:I2C接口的硬件实现相对简单,易于集成到各种微控制器和其他集成电路中。
  8. 应用广泛:I2C广泛应用于各种电子产品中,如手机、电视、医疗设备和嵌入式系统等。
  9. 支持热插拔:I2C设备支持在系统运行时添加或移除,即热插拔。
  10. 总线仲裁:在多主设备的情况下,I2C协议提供了一种仲裁机制,以决定哪个主设备可以控制总线。
  11. 时钟拉伸:从设备可以通过拉低时钟线来暂停通信(称为时钟拉伸),以便有足够的时间处理接收到的数据或完成数据发送。
  12. 应答机制:I2C通信中包含应答(ACK)和非应答(NACK)信号,用于指示数据是否成功接收。

I2C由于其简单和灵活的特性,成为了连接低速外围设备,如传感器、EEPROM、显示器等的理想选择。

I²C 总线时序图

总线时序图是理解IIC通信的关键。它展示了开始信号、数据位的传输、应答位以及停止信号的顺序。在IIC通信中,数据位在SCL线为高电平时被认为是稳定的,因此数据应该在SCL的高电平期间被读取。

起始条件: SCL高电平期间,SDA从高电平切换到低电平

终止条件: SCL高电平期间,SDA从低电平切换到高电平

起始和终止条件都是由主机产生

STM32实战之深入理解I²C通信协议,stm32,MCU,IIC,软件模拟,例程分享

发送一个字节: SCL低电平期间,主机将数据位依次放到SDA线上,(高位先行),然后释放SCL,从机将在SCL高电平期间读取数据位,所以SCL高电平期间SDA不允许由数据变化,依次循环上述过程8次即可发送一个字节

STM32实战之深入理解I²C通信协议,stm32,MCU,IIC,软件模拟,例程分享

接收一个字节: SCL低电平期间,从机将数据位依次放到SDA线上(高位先行),然后释放SCL,主机将在SCL高电平期间读取数据位,所哟一SCL高电平期间SDA不允许有数据变换,依次循环上述过程8次,即可接收一个字节(主机在接收数据前需要先释放SDA)

STM32实战之深入理解I²C通信协议,stm32,MCU,IIC,软件模拟,例程分享

发送应答:  主机在接收完一个字节后,在下一个时钟发送一位数据,数据0表示应答,数据1表示非应答

接收应答:  主机在发送完一个字节之后,在下一个时钟接收一位数据,判断从机是否应答,数据0表示应答,数据1表示非应答(主机在接收之前需要释放SDA)

STM32实战之深入理解I²C通信协议,stm32,MCU,IIC,软件模拟,例程分享

软件模拟I²C时序分享

/**
  * @brief  定义SCL写函数
  * @param  None
  * @retval None
  */
    void myi2c_w_scl(uint8_t bitval){
        GPIO_WriteBit(GPIOA, GPIO_Pin_1, (BitAction)bitval); //将bitval的值写入GPIOA的Pin_1,也就是SCL线
        Delay_us(10); //延迟10微秒
    }
    
    /**
  * @brief  定义SDA写函数
  * @param  None
  * @retval None
  */
    void myi2c_w_sda(uint8_t bitval){
        GPIO_WriteBit(GPIOA, GPIO_Pin_0, (BitAction)bitval); //将bitval的值写入GPIOA的Pin_0,也就是SDA线
        Delay_us(10); //延迟10微秒
    }
    
    /**
    * @brief  读取SDA数据
    * @param  None
    * @retval None
    */
    uint8_t myi2c_r_sda(void){
        return GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_0); //读取GPIOA的Pin_0,也就是SDA线的值
    }

/**
  * @brief  软件模拟I2C初始化
    *        SDA        PA0        推挽输出
    *        SCL        PA1        推挽输出
  * @param  None
  * @retval None
  */
void myi2c_init(void){
    //初始化GPIO口
        RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); //使能GPIOA时钟
      GPIO_InitTypeDef GPIO_InitStructure; //定义GPIO初始化结构体
      GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD; //设置GPIO模式为开漏输出
      GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1; //设置GPIO的Pin_0和Pin_1
      GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //设置GPIO速度为50MHz
      GPIO_Init(GPIOA, &GPIO_InitStructure); //初始化GPIOA
    
    //释放总线
    GPIO_SetBits(GPIOA, GPIO_Pin_0 | GPIO_Pin_1); //将GPIOA的Pin_0和Pin_1设置为高电平,释放总线
}

/**
  * @brief  I2C起始条件
  * @param  None
  * @retval None
  */
void i2c_start(void){
    //输出起始条件
    myi2c_w_sda(1); //将SDA线设置为高电平
    myi2c_w_scl(1); //将SCL线设置为高电平
    
    myi2c_w_sda(0); //将SDA线设置为低电平,生成起始条件
    myi2c_w_scl(0); //将SCL线设置为低电平
}

/**
  * @brief  I2C结束条件
  * @param  None
  * @retval None
  */
void i2c_stop(void){
    //输出起始条件
    myi2c_w_sda(0); //将SDA线设置为低电平
    myi2c_w_scl(1); //将SCL线设置为高电平
    myi2c_w_sda(1); //将SDA线设置为高电平,生成结束条件
}

/**
* @brief  I2C发送一个字节
  * @param  None
  * @retval None
  */
void myi2c_sendbyte(uint8_t byte){
    for(uint8_t i = 0; i < 8; i++){ //循环8次,发送一个字节
        myi2c_w_sda(byte & 0x80 >> i);    //每发送一次向右偏移一个字节
        myi2c_w_scl(1); //将SCL线设置为高电平
        myi2c_w_scl(0); //将SCL线设置为低电平
    }
}

/**
  * @brief  I2C接收一个字节
  * @param  None
  * @retval None
  */
uint8_t myi2c_recv_byte(void){
    uint8_t byte = 0; //定义一个字节变量
    for(uint8_t i = 0; i < 8; i++){ //循环8次,接收一个字节
        myi2c_w_scl(1); //将SCL线设置为高电平
        if(myi2c_r_sda() == 1){byte |= (0x80 >> i);} //如果SDA线为高电平,将byte的相应位设置为1
            myi2c_w_scl(0); //将SCL线设置为低电平
    }
    return byte; //返回接收到的字节
}

/**
  * @brief  I2C接收应答
  * @param  None
  * @retval None
  */
uint8_t myi2c_recv_ack(void){
    uint8_t ackbit = 0; //定义一个应答位变量
    myi2c_w_sda(1); //将SDA线设置为高电平
    myi2c_w_scl(1); //将SCL线设置为高电平
    ackbit = myi2c_r_sda(); //读取SDA线的值,也就是应答位
    myi2c_w_scl(0); //将SCL线设置为低电平
    return ackbit; //返回应答位
}

/**
* @brief  I2C发送应答
  * @param  None
  * @retval None
  */
void myi2c_send_ack(uint8_t ackbit){
    myi2c_w_sda(ackbit); //将应答位的值写入SDA线
    myi2c_w_scl(1); //将SCL线设置为高电平
    myi2c_w_scl(0); //将SCL线设置为低电平
}

软件模拟IIC驱动AT24C02分享

例程简介

通过I2C协议与AT24C04 EEPROM芯片进行交互的函数。EEPROM代表电可擦除可编程只读存储器,这是一种非易失性存储器,用于计算机和其他电子设备中存储断电后必须保存的少量数据。

以下是每个函数的简要概述:

  1. ​AT24_init​​:此函数初始化与AT24C04芯片通信的I2C接口。
  2. ​AT24_write_byte​​:此函数将单个字节的数据写入AT24C04芯片的指定地址。
  3. ​AT24_read_byte​​:此函数从AT24C04芯片的指定地址读取单个字节的数据。
  4. ​AT24_write_page​​:此函数将多个字节的数据写入AT24C04芯片的指定地址。AT24C04的内存被划分为多个页面,每个页面可以容纳多个字节的数据。
  5. ​AT24_WriteBuffer​​:此函数将数据缓冲区写入AT24C04芯片。它考虑到芯片内存的页面结构,并在必要时跨多个页面写入数据。
  6. ​AT24_readBuffer​​​:此函数从AT24C04芯片读取数据缓冲区。与​​AT24_WriteBuffer​​一样,它也考虑到芯片内存的页面结构。

例程分享

/*源代码*/
#include "AT24.h"

uint8_t AT24_ADDR_W1	= 0XA0;
uint8_t AT24_ADDR_W2	= 0XA2;
uint8_t AT24_ADDR_R1	= 0xA1;
uint8_t AT24_ADDR_R2	= 0xA3;


/**
  * @brief  AT24C04初始化
  * @param  None
  * @retval None
  */
void AT24_init(void){
	
	myi2c_init();
	
}
	
/**
  * @brief  指定地址写入一个字节数据(0 ---- 255)
  * @param  uint16_t addr	写入数据地址
  * @param	uint8_t data	写入字节
  * @retval 写入成功返回4
  */
uint8_t AT24_write_byte(uint16_t addr, uint8_t data){
	i2c_start();	//发送起始信号
	myi2c_sendbyte(AT24_ADDR_W1);	//发送从机地址
	if(myi2c_recv_ack() == 1){
		i2c_stop();		//发送停止位
		printf("AT24寻址未应答\r\n");
		return 1;
	}
	
	myi2c_sendbyte(addr);	//发送要写入的地址
	if(myi2c_recv_ack() == 1){
		i2c_stop();		//发送停止位
		printf("AT24内部寻址未应答\r\n");
		return 2;
	}
	
	myi2c_sendbyte(data);	//发送要写入的数据
	if(myi2c_recv_ack() == 1){
		i2c_stop();		//发送停止位
		printf("AT24写入数据未应答\r\n");
		return 3;
	}
	i2c_stop();		//发送停止位
	printf("AT24写入数据成功\r\n");
	return  4;
}


/**
  * @brief  指定地址读出一个字节数据(0 ---- 255)
  * @param  uint16_t addr	读数据地址
  * @retval 成功返回读出数据
  */

uint8_t AT24_read_byte(uint16_t addr){
	uint8_t read_data = 0;
	i2c_start();	//发送起始信号
	myi2c_sendbyte(AT24_ADDR_W1);	//发送从机地址
	if(myi2c_recv_ack() == 1){
		i2c_stop();		//发送停止位
		printf("AT24寻址未应答\r\n");
		return 1;
	}
	
	myi2c_sendbyte(addr);	//发送要写入的地址
	if(myi2c_recv_ack() == 1){
		i2c_stop();		//发送停止位
		printf("AT24内部寻址未应答\r\n");
		return 2;
	}
	i2c_stop();		//发送停止位
	i2c_start();	//发送起始信号
	myi2c_sendbyte(AT24_ADDR_R1);	//发送从机地址
	if(myi2c_recv_ack() == 1){
		i2c_stop();		//发送停止位
		printf("AT24寻址未应答\r\n");
		return 1;
	}
	read_data = myi2c_recv_byte();
	myi2c_send_ack(1);
	i2c_stop();		//发送停止位
	return read_data;
}


/**
  * @brief  指定地址页写入数据(0 ---- 255)
  * @param  uint16_t addr	写入数据地址
  * @param	uint8_t data	写入字节首地址
  * @param	uint8_t num 写入字节个数
  * @retval 写入成功返回4
  */
uint8_t AT24_write_page(uint16_t addr, uint8_t num, uint8_t *data){
	i2c_start();	//发送起始信号
	myi2c_sendbyte(AT24_ADDR_W1);	//发送从机地址
	if(myi2c_recv_ack() == 1){
		i2c_stop();		//发送停止位
		printf("AT24寻址未应答\r\n");
		return 1;
	}
	
	myi2c_sendbyte(addr);	//发送要写入的地址
	if(myi2c_recv_ack() == 1){
		i2c_stop();		//发送停止位
		printf("AT24内部寻址未应答\r\n");
		return 2;
	}
	while(num--){
		myi2c_sendbyte(*data);	//发送要写入的数据
		if(myi2c_recv_ack() == 1){
			i2c_stop();		//发送停止位
			printf("AT24写入数据未应答\r\n");
			return 3;
		}
		data++;
	}
	
	i2c_stop();		//发送停止位
	printf("AT24写入数据成功\r\n");
	return  4;
}


/**
  * @brief  随机写
  * @param  uint8_t *pBuffer	写入数据的首地址
  * @param  uint32_t WriteAddr	写入地址
  * @param  uint16_t NumByteToWrite	数据长度
  * @retval None
  */
void AT24_WriteBuffer(uint8_t *pBuffer, uint32_t WriteAddr, uint16_t NumByteToWrite){
	uint8_t NumOfPage = 0, NumOfSingle = 0, Addr = 0, count = 0, temp = 0;
	Addr = WriteAddr % 16;	//判断地址是否为整页
	count = 16 - Addr;			//当前页剩余字节数
	NumOfPage =  NumByteToWrite / 16;	//需要的整页数
	NumOfSingle = NumByteToWrite % 16;	//除整页剩余的字节数
	
	if (Addr == 0) /*整页开始  */
  {
    if (NumOfPage == 0) /*所写数据不够一整页,直接调用页编程函数 */
    {
      AT24_write_page(WriteAddr, NumByteToWrite, pBuffer);
    }
    else /*所写数据超过一页*/
    {
      while (NumOfPage--)	//整页写
      {
        AT24_write_page(WriteAddr, 16, pBuffer);
        WriteAddr +=  16;
        pBuffer += 16;
      }

      AT24_write_page(WriteAddr, NumOfSingle, pBuffer);	//除整页之外剩余的
    }
  }
  else /*不是整页开始写  */
  {
    if (NumOfPage == 0) /*所写不到一页 */
    {
      if (NumOfSingle > count) /*所需空间大于当前页所剩空间*/
      {
        temp = NumOfSingle - count;	//当前页写完之后剩余量

        AT24_write_page(WriteAddr, count, pBuffer);	//在当前页写,写满
        WriteAddr +=  count;
        pBuffer += count;

        AT24_write_page(WriteAddr, temp, pBuffer);	//剩余写入下一页
      }
      else
      {
        AT24_write_page(WriteAddr, NumByteToWrite, pBuffer);	//直接写当前页
      }
    }
    else /*写入数据量大于一页 */
    {
      NumByteToWrite -= count;	//写满当前页所剩数据
      NumOfPage =  NumByteToWrite / 16;	//要写入的整页
      NumOfSingle = NumByteToWrite % 16;	//写完整页剩余的字节

      AT24_write_page(WriteAddr, count, pBuffer);//把当前页写满
      WriteAddr +=  count;
      pBuffer += count;

      while (NumOfPage--)	//写整页
      {
        AT24_write_page(WriteAddr, 16, pBuffer);
        WriteAddr +=  16;
        pBuffer += 16;
      }

      if (NumOfSingle != 0)	//写剩余不满一页的字节
      {
        AT24_write_page(WriteAddr, NumOfSingle, pBuffer);
      }
    }
  }
}

/**
  * @brief  随便读
  * @param  None
  * @retval None
  */
uint8_t AT24_readBuffer(uint16_t addr, uint16_t num, uint8_t *recvdata){
	i2c_start();	//发送起始信号
	myi2c_sendbyte(AT24_ADDR_W1);	//发送从机地址
		Delay_us(10);
	if(myi2c_recv_ack() == 1){
		i2c_stop();		//发送停止位
		printf("AT24器件寻址未应答\r\n");
		return 1;
	}

	myi2c_sendbyte(addr);	//发送要写入的地址
	if(myi2c_recv_ack() == 1){
		i2c_stop();		//发送停止位
		printf("AT24内部寻址未应答\r\n");
		return 2;
	}
	i2c_stop();		//发送停止位
	i2c_start();	//发送起始信号
	myi2c_sendbyte(AT24_ADDR_R1);	//发送从机地址
	if(myi2c_recv_ack() == 1){
		i2c_stop();		//发送停止位
		printf("AT24器件2寻址未应答\r\n");
		return 1;
	}
	while(num--){
		*recvdata = myi2c_recv_byte();
		myi2c_send_ack(0);
		recvdata++;
		Delay_us(5);
	}
	myi2c_send_ack(1);
	i2c_stop();		//发送停止位
	return num;
}
/*头文件*/
#ifndef __AT24_H_
#define __AT24_H_

#include "stm32f4xx.h"                  // Device header
#include "myi2c.h"
#include "usart.h"
#include "delay.h"

void AT24_init(void);
uint8_t AT24_write_byte(uint16_t addr, uint8_t data);
uint8_t AT24_read_byte(uint16_t addr);
uint8_t AT24_write_page(uint16_t addr, uint8_t num, uint8_t *data);
void AT24_WriteBuffer(uint8_t *pBuffer, uint32_t WriteAddr, uint16_t NumByteToWrite);
uint8_t AT24_readBuffer(uint16_t addr, uint16_t num, uint8_t *recvdata);
#endif

STM32的I²C外设

STM32内部集成了硬件I²C收发电路,可以由硬件自动执行时钟生成、起始终止条件生成、应答位收发、数据发送等功能,减轻CPU的负担。STM32的I²C外设支持多主机模式、7位或10位地址模式、不同的通信速度(标准速度高达100KHZ,快速400KHZ)、DMA,以及兼容SMBus协议。

  1. 硬件自动执行:STM32内部的硬件I2C模块可以自动执行时钟生成、起始终止条件生成、应答位收发、数据发送等功能,减轻了CPU的负担,使通信更高效。
  2. 多主机模式:STM32的硬件I2C模块支持多主机模式,可以实现多个主机设备在同一总线上进行通信。
  3. 7位或10位地址模式:STM32的硬件I2C模块支持7位或10位地址模式,可以适应不同设备的寻址需求。
  4. 不同通信速度:STM32的硬件I2C模块支持不同的通信速度,标准速度可达100KHz,快速模式可达400KHz,可以根据具体需求选择合适的通信速率。
  5. 支持DMA:STM32的硬件I2C模块支持DMA(直接内存访问)功能,可以通过DMA传输数据,提高数据传输效率,减少CPU的负载。
  6. 兼容SMBus协议:STM32的硬件I2C模块与SMBus(系统管理总线)协议兼容,SMBus是一种基于I2C的通信协议,用于管理和控制电子设备。

STM32实战之深入理解I²C通信协议,stm32,MCU,IIC,软件模拟,例程分享

STM32实战之深入理解I²C通信协议,stm32,MCU,IIC,软件模拟,例程分享

这些特点使得STM32的硬件I2C模块成为在嵌入式系统中实现I2C通信的理想选择,提供了方便、高效和可靠的通信功能。文章来源地址https://www.toymoban.com/news/detail-769073.html

到了这里,关于STM32实战之深入理解I²C通信协议的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • stm32之27.iic协议oled显示

    屏幕如果无法点亮,需要用GPIO_OType_PP推挽输出,加并上拉电阻 1.显示字符串代码 2.显示图片代码(+unsigned+强制转换(char*)) 汉字显示

    2024年02月10日
    浏览(42)
  • STM32使用IIC通信的引脚配置问题

    在使用IIC通信时,遇到引脚配置问题,记录一下: IIC的两个引脚SDA和SCL都要求既能输入又能输出。 问题 : SDA线是由不同的器件分时控制的,这样就会有一个问题:当一个器件主动置高或者置低时,如果另一个器件发出相反电平,就会造成短路。 如果将SDA引脚配置成推挽模

    2024年02月12日
    浏览(35)
  • STM32单片机初学4-IIC通信(软件模拟)

    IIC ( Inter-Integrated Circuit )又称I2C(习惯读“I方C”),是 IIC Bus简称,中文名为 集成电路总线 ,它是一种串行通信总线,使用多主从架构,由飞利浦公司在1980年代为了让主板、嵌入式系统或手机用以连接低速周边设备而发展。适用于IC间的短距离数据传输。 最初的IIC通信速

    2024年02月05日
    浏览(69)
  • STM32软件模拟IIC时序实现与EEPROM的通信

                       IIC简介  IIC物理层 用软件模拟IIC时序         一、空闲状态(初始化):SCL 和SDA都保持高电平         二、开始信号 :SCL为高电平期间,SDA由高电平变为低电平。         三、停止信号:SCL为高电平期间,SDA由低电平变为高电平   

    2024年02月09日
    浏览(78)
  • STM32单片机初学5-IIC通信驱动OLED屏幕

    在我上篇文章(STM32-软件模拟IIC通信)讲解了软件模拟IIC通信。这篇文章详将细讲解利用软件模拟IIC来控制0.96寸的OLED屏幕(如下图),使其显示字符串。本文将不再对IIC通信原理做详细讲解,所以对IIC通信原理不熟悉的话可以参考我上篇文章(点击上面的链接直接跳转)。

    2023年04月10日
    浏览(51)
  • STM32物联网项目-SHT30温湿度采集(IIC通信)

    SHT30数字温湿度传感器 SHT3x湿度传感器系列包括低成本版本SHT30、标准版本SHT31,以及高端版本SHT35。 SHT3x湿度传感器系列结合了多种功能和各种接口(I2C、模拟电压输出),应用友好,工作电压范围宽(2.15至5.5 V),适合各类应用。 SHT3x建立在全新和优化的CMOSens® 芯片之上,

    2023年04月21日
    浏览(38)
  • STM32使用IIC协议驱动0.96寸OLED屏

    IIC是常用的协议之一,它通过不同的地址来区分设备,并且端口需要是开漏模式,并且需要接上拉电阻  要使用IIC驱动OLED,首先要配置IIC 然后编写写入函数 ErrorStatus I2C_CheckEvent(I2C_TypeDef* I2Cx, uint32_t I2C_EVENT) 为判断事件的函数 有以下多种事件 OLED初始化 上图分别为 (起始位

    2024年02月03日
    浏览(37)
  • [015] [STM32] IIC协议详解与HAL库相关函数分析

    IIC(Inter Integrated Circuit)总线在物理层由SDA(Serial data, 串行数据线)、SCL(Serial clock line,串行时钟线)和上拉电阻组成。 每个连接到总线的设备都 有一个独立的地址 ,主机可以利用此地址进行不同设备之间的访问 连接到相同总线的 IC 数量受到总线的最大电容 400pF 限制 为了避

    2023年04月08日
    浏览(33)
  • STM32 第19讲 IIC(协议简介/读取驱动AT24C02/实验)

    IIC: Inter Integrated Circuit,集成电路总线,是一种 同步 串行 半双工通信协议 ①总线由数据线 SDA 和时钟线 SCL 构成的串行总线,数据线用来传输数据,时钟线用来同步数据收发。 ②总线上每一个器件都有一个唯一的地址识别,所以我们只需要知道器件的地址,根据时序就可以

    2024年02月03日
    浏览(36)
  • STM32通信协议

    通信接口 通信的目的:将一个设备的数据传送到另一个设备,扩展硬件系统 通信协议:制定通信的规则,通信双方按照协议规则进行数据收发 USART: TX是数据发送脚 RX是数据接收脚 I2C: SCL是时钟 SDA是数据 SPI: SCLK是时钟 MOSI是主机输出数据脚 MISO是主机输入数据脚 CS是片选用于

    2024年03月28日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包