【数据结构】哈希经典应用:位图——[深度解析](8)

这篇具有很好参考价值的文章主要介绍了【数据结构】哈希经典应用:位图——[深度解析](8)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言

大家好吖,欢迎来到 YY 滴 数据结构 系列 ,热烈欢迎! 本章主要内容面向接触过C++的老铁
主要内容含:
【数据结构】哈希经典应用:位图——[深度解析](8),YY滴 《数据结构》,数据结构,哈希算法,算法

欢迎订阅 YY滴C++专栏!更多干货持续更新!以下是传送门!

  • YY的《C++》专栏
  • YY的《C++11》专栏
  • YY的《Linux》专栏
  • YY的《数据结构》专栏
  • YY的《C语言基础》专栏
  • YY的《初学者易错点》专栏
  • YY的《小小知识点》专栏

一.位图的基本概念

  • 所谓位图,就是用 每一位 来存放某种状态,适用于海量数据,数据无重复的场景。
  • 通常是用来判断某个数据存不存在的

二.位图的原理

  • 哈希—— 直接定址法
  • 例:
    【数据结构】哈希经典应用:位图——[深度解析](8),YY滴 《数据结构》,数据结构,哈希算法,算法
  • 在实际场景中,我们的机器一般是 小端机(从左到右,从大到小排布)
  • 所以真正的场景一般如下:
    【数据结构】哈希经典应用:位图——[深度解析](8),YY滴 《数据结构》,数据结构,哈希算法,算法
  • 小端机性质 证明:
    【数据结构】哈希经典应用:位图——[深度解析](8),YY滴 《数据结构》,数据结构,哈希算法,算法

三.位图(bitset)的代码实现(逐过程解读)

【1】位图的文档查看

  • 我们可以重点关注红圈圈出的三个位图常用函数
    【数据结构】哈希经典应用:位图——[深度解析](8),YY滴 《数据结构》,数据结构,哈希算法,算法

【2】把X映射的那个标记成1——对应biteset中的set

【数据结构】哈希经典应用:位图——[深度解析](8),YY滴 《数据结构》,数据结构,哈希算法,算法

【3】把X映射的那个标记成0——对应biteset中的reset

【数据结构】哈希经典应用:位图——[深度解析](8),YY滴 《数据结构》,数据结构,哈希算法,算法

【4】判断某位是1还是0——对应biteset中的test

【数据结构】哈希经典应用:位图——[深度解析](8),YY滴 《数据结构》,数据结构,哈希算法,算法文章来源地址https://www.toymoban.com/news/detail-769269.html

【5】位图的完整实现

#include<vector>

namespace bit
{
	template<size_t N>
	class bitset
	{
	public:
		bitset()
		{
			_a.resize(N / 32 + 1);//位图的初始化,确定分为多少块
		}

		// x映射的那个标记成1
		void set(size_t x)
		{
			size_t i = x / 32;
			size_t j = x % 32;

			_a[i] |= (1 << j);
		}

		// x映射的那个标记成0
		void reset(size_t x)
		{
			size_t i = x / 32;
			size_t j = x % 32;

			_a[i] &= (~(1 << j));
		}

		bool test(size_t x)
		{
			size_t i = x / 32;
			size_t j = x % 32;

			return _a[i] & (1 << j);
		}
	private:
		vector<int> _a;
	};
}

四.位图的经典应用场景

【※】对数据大小&转换的基本概念

  • 1G =1024 MB=10241024 BK=10241024*1024 Byte= 2^30 byte = 10亿+ byte
  • 例:我们判断40亿个整数需要多少G呢?
    分析:40亿个int,160亿byte,根据10亿byte对应1G,160亿byte对应16G

【1】给40亿个不重复的无符号整数,没排过序。给一个无符号整数,如何快速判断一个数是否在这40亿个数中?

  • 分析:常规思路是遍历/排序+二分查找
  • 遍历的时间复杂度是O(N),排序(O(NlogN))+二分查找 logN
  • 显然对于40亿无符号整数来说,需要占用16G,占用资源过于庞大,不妥
  • 快速判断在不在,显然是位图经典场景,利用位图解决:
  • 数据是否在给定的整形数据中,结果是在或者不在,刚好是两种状态,那么可以使用一个二进制比特位来代表数据是否存在的信息,如果二进制比特位为1,代表存在,为0代表不存在。比如:
    【数据结构】哈希经典应用:位图——[深度解析](8),YY滴 《数据结构》,数据结构,哈希算法,算法

【2】给定100亿个整数,设计算法找到只出现一次的整数

  • 分析:我们可以用两个位图来控制,我们可以这样设计
    【数据结构】哈希经典应用:位图——[深度解析](8),YY滴 《数据结构》,数据结构,哈希算法,算法
  • 代码展示设计思路如图所示:
template<size_t N>
	class twobitset
	{
	public:
		void set(size_t x)
		{
			// 00 -> 01
			if (!_bs1.test(x) && !_bs2.test(x))
			{
				_bs2.set(x);
			} // 01 -> 10
			else if (!_bs1.test(x) && _bs2.test(x))
			{
				_bs1.set(x);
				_bs2.reset(x);
			}
			// 本身10代表出现2次及以上,就不变了
		}

		bool is_once(size_t x)
		{
			return !_bs1.test(x) && _bs2.test(x);
		}
	private:
		bitset<N> _bs1;
		bitset<N> _bs2;
	};

【3】位图应用变形:1个文件有100亿个int,1G内存,设计算法找到出现次数不超过2次的所有整数

  • 此题的设计思路与上面的【2】基本一致,设计上要稍作改动:
    【数据结构】哈希经典应用:位图——[深度解析](8),YY滴 《数据结构》,数据结构,哈希算法,算法
  • 代码展示设计思路如图所示:
template<size_t N>
	class twobitset
	{
	public:
		void set(size_t x)
		{
			// 00 -> 01
			if (!_bs1.test(x) && !_bs2.test(x))
			{
				_bs2.set(x);                        //出现一次
			} // 01 -> 10
			else if (!_bs1.test(x) && _bs2.test(x))
			{
				_bs1.set(x);
				_bs2.reset(x);                    //出现两次
			}// 10 -> 11
			else if (_bs1.test(x) && !_bs2.test(x))
			{
				_bs2.set(x);                      //出现三次
			}
			// 此外代表出现3次及以上,就不变了
		}

		bool max_two(size_t x)
		{
			return (_bs1.test(x) && !_bs2.test(x))||(!_bs1.test(x) && _bs2.test(x));   //10 或者 01
		}
	private:
		bitset<N> _bs1;
		bitset<N> _bs2;
	};

【4】给两个文件,分别有100亿个整数,我们只有1G内存,如何找到两个文件的交集?

  • 分析:
  • 第一种思路是:把其中一个文件存入位图,遍历另一个文件元素,将问题转变成"在不在"问题
  • 问题缺陷: 这种问题存在去重问题,即多次重复(下图中,交集明明只有一个3,但是会出现多个重复的3交集)
    【数据结构】哈希经典应用:位图——[深度解析](8),YY滴 《数据结构》,数据结构,哈希算法,算法
  • 分析:
  • 第二种思路是:将两个文件映射到两个位图中去(实现去重)
  • 如果相对应的位置都是1(满足相&为1),则此元素就在交集中

到了这里,关于【数据结构】哈希经典应用:位图——[深度解析](8)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【数据结构】哈希应用

    目录 一、位图 1、位图概念 2、位图实现 2.1、位图结构 2.2、比特位置1 2.3、比特位置0 2.4、检测位图中比特位 3、位图例题 3.1、找到只出现一次的整数 3.2、找到两个文件交集 3.3、找到出现次数不超过2次的所有整数 二、布隆过滤器 1、布隆过滤器提出 2、布隆过滤器概念 3、布

    2024年02月08日
    浏览(41)
  • 哈希思想应用【C++】(位图,布隆过滤器,海量数据处理面试题)

       目录 一,位图 1. 位图概念 2.实现 3. 测试题 位图的优缺点 二,布隆过滤器 1). 布隆过滤器提出 2). 概念 3). 布隆过滤器的查找 4). 布隆过滤器删除(了解) 5). 布隆过滤器优点 6). 布隆过滤器缺陷 三,海量数据面试题 1)哈希切割 我们首先由一道面试题来理解位图 给40亿个不

    2024年02月04日
    浏览(45)
  • [JDK8下的HashMap类应用及源码分析] 数据结构、哈希碰撞、链表变红黑树

    [Java基础] StringBuffer 和 StringBuilder 类应用及源码分析 [Java基础] 数组应用及源码分析 [Java基础] String,分析内存地址,源码 [JDK8环境下的HashMap类应用及源码分析] 第一篇 空构造函数初始化 [JDK8环境下的HashMap类应用及源码分析] 第二篇 看源码了解HashMap的扩容机制 [JDK8环境下的

    2024年02月10日
    浏览(44)
  • 【数据结构和算法】位图 BitMap

    2024年02月14日
    浏览(41)
  • 数据结构:位图、布隆过滤器以及海量数据面试题

    1.1概念 引入 给40亿个不重复的无符号整数,没排过序。给一个无符号整数,如何快速判断一个数是否在这40亿个数中。 (1)遍历: 时间复杂度O(N) (2)排序加二分:时间复杂度O(N*logN) 其中 方法(2)是行不通 的,因为内存很难装下这么多数据(40亿整数大概为16G)。 方法(1) 可行

    2024年02月05日
    浏览(44)
  • 【C++】哈希应用之位图

    👀 樊梓慕: 个人主页  🎥 个人专栏: 《C语言》 《数据结构》 《蓝桥杯试题》 《LeetCode刷题笔记》 《实训项目》 《C++》 《Linux》 《算法》 🌝 每一个不曾起舞的日子,都是对生命的辜负 目录 前言 1.位图的概念 2.位图的模拟实现 2.1构造 2.2set 2.3reset 2.4test 3.源码 4.位图应

    2024年04月11日
    浏览(39)
  • 哈希的应用——位图

    ✅1主页::我的代码爱吃辣 📃2知识讲解:数据结构——位图 ☂️3开发环境:Visual Studio 2022 💬4前言:所谓位图,就是用每一位来存放某种状态,适用于海量数据,数据无重复的场景。通常是用来判断某个数据存不存在的,其本质也是一种hash。但是其占用空间很少。 目录

    2024年02月10日
    浏览(34)
  • C++ 哈希的应用【位图】

    ✨个人主页: 北 海 🎉所属专栏: C++修行之路 🎃操作环境: Visual Studio 2022 版本 17.6.5 位图( bitset )是一种特殊的数据结构,仅仅依靠 0 、 1 表示当前位置是否有数据存在,常用于对查找速度和存储空间有着高要求的场景中,除此之外,位图还可以配合宏定义,实现同时传

    2024年02月15日
    浏览(70)
  • 【C++】哈希应用:位图 哈希切分 布隆过滤器

    我走后,他们会给你们加班费,会给你们调休,这并不是他们变好了,而是因为我来过。------龙哥 1. 大厂经典的面试题,给你40亿个不重复的无符号整数,让你快速判断一个数是否在这40亿个数中,最直接的思路就是遍历这40亿个整数,逐一进行比对,当然这种方式可以倒是可

    2023年04月09日
    浏览(41)
  • C++ 哈希思想应用:位图,布隆过滤器,哈希切分

    1.问题 给你40亿个不重复的无符号整数,没排过序.给一个无符号整数,如何快速判断一个数是否在这40亿个数中? 2.分析 1 Byte = 8 bit 1KB = 1024 Byte 1MB = 1024KB = 1024 1024 大约= 10的6次方Byte 1GB = 1024MB = 1024 10的6次方 大约= 10的9次方Byte = 10亿字节 因此4GB 约等于40亿字节 其实最快的方式就是

    2024年04月17日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包