数据结构第六课 -----链式二叉树的实现

这篇具有很好参考价值的文章主要介绍了数据结构第六课 -----链式二叉树的实现。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

作者前言

🎂 ✨✨✨✨✨✨🍧🍧🍧🍧🍧🍧🍧🎂
​🎂 作者介绍: 🎂🎂
🎂 🎉🎉🎉🎉🎉🎉🎉 🎂
🎂作者id:老秦包你会, 🎂
简单介绍:🎂🎂🎂🎂🎂🎂🎂🎂🎂🎂🎂🎂🎂🎂🎂
喜欢学习C语言和python等编程语言,是一位爱分享的博主,有兴趣的小可爱可以来互讨 🎂🎂🎂🎂🎂🎂🎂🎂
🎂个人主页::小小页面🎂
🎂gitee页面:秦大大🎂
🎂🎂🎂🎂🎂🎂🎂🎂
🎂 一个爱分享的小博主 欢迎小可爱们前来借鉴🎂


二叉树

前面粗略的介绍了二叉树
二叉树主要有两种 空树和非空树
而非空树拆分为 : 根节点 和左子树和右子树
数据结构第六课 -----链式二叉树的实现,数据结构
二叉树的性质

  1. 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有 2^(i-1)个结点.

  2. 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是2^h -1 .

  3. 对任何一棵二叉树, 如果度为0其叶结点个数为n0 , 度为2的分支结点个数为n2 ,则有 n0= n2+1

  4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h=log(n+1) . (ps: 是log以2
    为底,n+1为对数)

  5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有:

    1. 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点
    2. 若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子
    3. 若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子

二叉树的遍历

学习二叉树结构,最简单的方式就是遍历。所谓二叉树遍历(Traversal)是按照某种特定的规则,依次对二叉树中的节点进行相应的操作,并且每个节点只操作一次。访问结点所做的操作依赖于具体的应用问题。 遍历是二叉树上最重要的运算之一,也是二叉树上进行其它运算的基础。

按照规则,二叉树的遍历有:前序/中序/后序的递归结构遍历:

  1. 前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。(根 ->左 ->右)

  2. 中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。(左->根->右)

  3. 后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。(左->右->根)

为此特意构建一个二叉树

#include<stdio.h>
#include<stdlib.h>
typedef int BTDataType;
typedef struct BinaryTreeNode
{
	BTDataType* val;
	struct BinaryTreeNode* left;
	struct BinaryTreeNode* rigth;

}BinaryTreeNode;
BinaryTreeNode* CreateNode(BTDataType elemest)
{
	BinaryTreeNode* p = (BinaryTreeNode*)malloc(sizeof(BinaryTreeNode));
	if (p == NULL)
	{
		perror("malloc");
		return -1;
	}
	p->val = elemest;
	return p;
}
int main()
{
	BinaryTreeNode* n1 = CreateNode(1);
	BinaryTreeNode* n2 = CreateNode(2);
	BinaryTreeNode* n3 = CreateNode(3);
	BinaryTreeNode* n4 = CreateNode(4);
	BinaryTreeNode* n5 = CreateNode(5);
	BinaryTreeNode* n6 = CreateNode(6);
	n1->left = n2;
	n1->rigth = n4;
	n2->left = n3;
	n2->rigth = NULL;
	n3->left = NULL;
	n3->rigth = NULL;
	n4->left = n5;
	n4->rigth = n6;
	n5->left = NULL;
	n5->rigth = NULL;
	n6->left = NULL;
	n6->rigth = NULL;
	return 0;
}

前序遍历

我们以上面图片为例
我们可以写成:
1 2 3 N N N 4 5 N N 6 N N
代码:

void PreOrder(BinaryTreeNode* n1)
{
	if (n1 == NULL)
	{
		printf("NULL ");
		return;
	}
		

	printf("%d ", n1->val);
	PreOrder(n1->left);
	PreOrder(n1->rigth);
}

数据结构第六课 -----链式二叉树的实现,数据结构

中序遍历

我们可以写成:N 3 N 2 N 1 N 5 N 4 N 6 N
代码:

void InOrdef(BinaryTreeNode* n1)
{
	if (n1 == NULL)
	{
		printf("NULL ");
		return;
	}
	PreOrder(n1->left);
	printf("%d ", n1->val);
	PreOrder(n1->rigth);
}

后序遍历

我们可以写成: N N 3 N 2 N N 5 N N 6 4 1
代码:

void PostOrder(BinaryTreeNode* n1)
{
	if (n1 == NULL)
	{
		printf("NULL ");
		return;
	}
	PreOrder(n1->left);
	PreOrder(n1->rigth);
	printf("%d ", n1->val);
}

小例子

叶子节点个数
思路:左子树的节点个数加上右子树的节点个数加上根节点

//节点个数
int TreeSize(BinaryTreeNode* n1)
{
	if (n1 == NULL)
		return 0;
	return 1 + TreeSize(n1->left) + TreeSize(n1->rigth);
}

叶节点个数
思路:左子树的叶节点个数加上右子树的叶节点个数加上根节点 需要注意的是为空树.和只有根节点的情况

//叶节点的个数
int TreeLeafSize(BinaryTreeNode* n1)
{
	//为空树
	if (n1 == NULL)
		return 0;
	//只有一个节点
	if (n1->left == NULL && n1->rigth == NULL)
		return 1;
	return TreeLeafSize(n1->left) + TreeLeafSize(n1->rigth);
}

树的高度
思路:左子树的高度和右子树高度比较,大的高度加上1就是整个二叉树的高度,需要注意的是空树情况下

int TreeHeigth(BinaryTreeNode* n1)
{
	if (n1 == NULL)
		return 0;
	if (n1->left == NULL && n1->rigth == NULL)
		return 1;
	int a = TreeHeigth(n1->left);
	int b = TreeHeigth(n1->rigth);
	return (a > b ? a : b) + 1;
}

#第k层的节点
思路: 左子树的第k-1层的节点个数 加上右子树的第k-1层的节点个数,如果k为0就是空,k=1,就是1

int NodeNum(BinaryTreeNode* n1, int k)
{
	if (n1 == NULL)
		return 0;
	if (k == 0)
		return 0;
	if (k == 1)
		return 1;
	return NodeNum(n1->left, k - 1) + NodeNum(n1->rigth, k - 1);
}

层次遍历
思路:层次遍历就是从第一层开始横向遍历
我们可以借助队列的性质,先进先出,我们先开始插入根节点,然后开始进行循环判断,只要出去的节点的左右孩子不为NULL就插入到队列,直到队列为空
数据结构第六课 -----链式二叉树的实现,数据结构

// 层序遍历
void BinaryTreeLevelOrder(BinaryTreeNode* root)
{
	//创建一个队列
	Queue Qu;
	//初始化
	QueueInit(&Qu);
	//插入的是节点,
	if (root != NULL)
		QueuePush(&Qu, root);
	while (QueueSize(&Qu))
	{
		BinaryTreeNode* from = QueueFront(&Qu);
		
		
		printf("%d ", from->val);
		//删除
		QueuePop(&Qu);
		//需要注意的是删除只是释放掉存储了二叉树节点的地址的空间,并没有释放二叉树节点
		if (from->left != NULL)
		{
			QueuePush(&Qu, from->left);
		}
		if (from->rigth != NULL)
		{
			QueuePush(&Qu, from->rigth);
		}
		
	}
	printf("\n");
	QueueDestroy(&Qu);
	
	
	
}

这个是打印全部的
如果要一层层的打印
思路: 我们可以定义一个变量,用来统计当前队列的个数,也就是当层的节点个数,然后每出列一个就把对应的左右孩子插入进去,然后该变量减1,直到为0,也就是该层的节点全部出列了,然后再计算出队列的长度,也就是下一层的节点个数,然后继续,直到队列的长度为0

数据结构第六课 -----链式二叉树的实现,数据结构

// 层序遍历
void BinaryTreeLevelOrder(BinaryTreeNode* root)
{
	//创建一个队列
	Queue Qu;
	//初始化
	QueueInit(&Qu);
	//插入的是节点,
	if (root != NULL)
		QueuePush(&Qu, root);
	int size = QueueSize(&Qu);
	while (QueueSize(&Qu))
	{
		while (size--)
		{
			BinaryTreeNode* from = QueueFront(&Qu);


			printf("%d ", from->val);
			//删除
			QueuePop(&Qu);
			//需要注意的是删除只是释放掉存储了二叉树节点的地址的空间,并没有释放二叉树节点
			if (from->left != NULL)
			{
				QueuePush(&Qu, from->left);
			}
			if (from->rigth != NULL)
			{
				QueuePush(&Qu, from->rigth);
			}
		}
		printf("\n");
		size = QueueSize(&Qu);
		
	}
	printf("\n");
	QueueDestroy(&Qu);
	
	
	
}

判断是否是完全二叉树
思路:我们和上面的层次遍历一样,先找一个队列进行一层层的入队和出队,如果遇见节点为NULL的就判断后面是否还有节点存在

// 判断二叉树是否是完全二叉树
int BinaryTreeComplete(BinaryTreeNode* root)
{
	//创建一个队列
	Queue Qu;
	//初始化
	QueueInit(&Qu);
	//插入的是节点,
	if (root != NULL)
		QueuePush(&Qu, root);
	while (QueueSize(&Qu))
	{
		
		BinaryTreeNode* from = QueueFront(&Qu);
		if (from == NULL)
			break;
		//删除
        QueuePop(&Qu);
		//需要注意的是删除只是释放掉存储了二叉树节点的地址的空间,并没有释放二叉树节点
		QueuePush(&Qu, from->left);
		QueuePush(&Qu, from->rigth);
	}
	//判断后面是否还有非空
	while (!QueueEmtry(&Qu))
	{
		BinaryTreeNode* from = QueueFront(&Qu);
		if (from != NULL)
			return 0;
		//删除
		QueuePop(&Qu);
	}
	QueueDestroy(&Qu);
	return 1;

}

知识点

前序:深度优先遍历
层序: 广度优先遍历文章来源地址https://www.toymoban.com/news/detail-769296.html

到了这里,关于数据结构第六课 -----链式二叉树的实现的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【数据结构】二叉树之链式结构

    🔥 博客主页 : 小羊失眠啦. 🎥 系列专栏 : 《C语言》 《数据结构》 《Linux》 《Cpolar》 ❤️ 感谢大家点赞👍收藏⭐评论✍️ 在学习二叉树各种各样的操作前,我们先来回顾一下二叉树的概念: 二叉树是度不超过2的树,由根结点和左右2个子树组成,每个子树也可以看作

    2024年02月04日
    浏览(46)
  • 数据结构——二叉树的链式结构

      个人主页 : 日刷百题 系列专栏 : 〖C语言小游戏〗〖Linux〗〖数据结构〗  〖C语言〗 🌎 欢迎各位 → 点赞 👍+ 收藏 ⭐️+ 留言 📝  ​ 这里我们使用先序遍历的思想来创建二叉树,这里的内容对于刚接触二叉树的朋友可能有些难理解,不妨先看完下面的二叉树各种遍历

    2024年02月05日
    浏览(48)
  • 【数据结构】二叉树的链式结构

    学习链式二叉树要知道三种遍历方式,便于对二叉树的节点以及左子树和右子树进行操作。 前序遍历:根、左子树、右子树 中序遍历:左子树、根、右子树 后序遍历:左子树、右子树、根 以下图为例: 得到的结果: 前序遍历:1 2 3 4 5 6 中序遍历:3 2 1 5 4 6 后序遍历:3 2

    2024年02月08日
    浏览(57)
  • 数据结构:二叉树的链式结构

    朋友们、伙计们,我们又见面了,本期来给大家解读一下链式二叉树的相关知识点,如果看完之后对你有一定的启发,那么请留下你的三连,祝大家心想事成! 数据结构与算法专栏 :数据结构与算法 个  人  主  页 :stackY、 C 语 言 专 栏 :C语言:从入门到精通 目录 前言

    2024年02月07日
    浏览(59)
  • 【数据结构和算法】--- 二叉树(3)--二叉树链式结构的实现(1)

    在学习二叉树的基本操作前,需先要创建一棵二叉树,然后才能学习其相关的基本操作。由于现在大家对二叉树结构掌握还不够深入,且为了方便后面的介绍,此处手动快速创建一棵简单的二叉树,快速进入二叉树操作学习,等二叉树结构了解的差不多时,我们反过头再来研

    2024年01月25日
    浏览(63)
  • 【数据结构—二叉树的链式结构实现】

    提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言 一、二叉树的存储结构 二、二叉树链式结构的实现 2.1手动构建一课树 2.2二叉树的遍历 三、二叉树链式结构的实现 3.1前序遍历(递归) 3.2中序遍历(递归) 3.3后序遍历(递归) 3.4层序遍历(非递

    2024年02月03日
    浏览(59)
  • 【数据结构 —— 二叉树的链式结构实现】

    树是一种非线性的数据结构,它是由n(n=0)个有限结点组成一个具有层次关系的集合。 把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。 1.有一个 特殊的结点,称为根结点 ,根节点没有前驱结点 2.除根节点外, 其余结点被分成M(M0)个互不相交

    2024年02月05日
    浏览(57)
  • 【数据结构】二叉树的链式存储结构

    前序遍历,又叫先根遍历。 遍历顺序:根 - 左子树 - 右子树 代码: 中序遍历,又叫中根遍历。 遍历顺序:左子树 - 根 - 右子树 代码 : 后序遍历,又叫后根遍历。 遍历顺序:左子树 - 右子树 - 根 代码 : 除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍

    2024年02月09日
    浏览(46)
  • 【数据结构】二叉树 链式结构的相关问题

     本篇文章来详细介绍一下二叉树链式结构经常使用的相关函数,以及相关的的OJ题。 目录 1.前置说明 2.二叉树的遍历 2.1 前序、中序以及后序遍历 2.2 层次遍历 3.节点个数相关函数实现 3.1 二叉树节点个数 3.2 二叉树叶子节点个数 3.3 二叉树第k层节点个数 3.4 在二叉树中查找值

    2024年02月14日
    浏览(59)
  • 【数据结构】二叉树链式结构的实现(三)

    目录 一,二叉树的链式结构 二,二叉链的接口实现         1,二叉链的创建         2,接口函数         3,动态创立新结点         4,创建二叉树         5,前序遍历         6,中序遍历         7,后序遍历 三,结点个数以及高度等      

    2024年02月08日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包