FPGA电平标准的介绍

这篇具有很好参考价值的文章主要介绍了FPGA电平标准的介绍。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

        对FPGA的管脚进行约束的时候,常常看到这样的电平标准,例如LVCOM18,LVCOS25,LVDS,LVDS25等等,其实这些都是一系列的电平标准。

        针对数字电路而言,数字电路表示电平的只有1和0两个状态,在实际的电路中,需要约定什么样的电压为1,什么样的电压为0。

        数字电路中的双阈值是这样定义的,例如TTL接口电平标准:对于输出端,状态1的电压要求为大于等于2.4V,状态0的电压要求为小于等于0.5V;对于输入端,状态1的判定要求为大于等于2.0V,状态0的判定要求为小于等于0.8V;也就是需要大于某一个阈值表示电平1,小于某一个阈值表示电平0.

 电平标准的分类

        常见IO接口可分为单端IO接口和差分IO接口,详细的IO标准参见下图。单端IO接口和差分IO接口均满足高速接口传输,区别在于应用场合不同。

fpga引脚电平标准,FPGA,fpga开发

 TTL

        TTL是Transistor-Transistor Logic的英文缩写,从其命名就可以看出,这种接口电平标准的初衷是用于基于三极管结构的数字系统之间的。

        工作于TTL接口标准下的数字电路,其内部有源器件的标准电源供给应为5V,输出、输入情况如下:

        对于输出端,状态1的电压要求为大于等于2.4V,状态0的电压要求为小于等于0.5V;

        对于输入端,状态1的判定要求为大于等于2.0V,状态0的判定要求为小于等于0.8V;

LVTTL

        由于2.4V与5V之间还有很大空间,这对改善噪声干扰并没有什么明显的好处,而且还会增加系统的功耗,并且由于数字状态1、0之间电平相差较大,还会影响到数字电路的响应速度。因此后来就把TTL的电压范围进行了一些压缩,从而形成了LVTTL——Low Voltage Transistor-Transistor Logic,也即低压TTL电平标准。以下介绍两种目前常用的LVTTL标准:

LVTTL3V3

        LVTTL3V3的意思,即其内部有源器件的标准电源供给为3.3V,输出、输入情况如下:

        对于输出端,状态1的电压要求为大于等于2.4V,状态0的电压要求为小于等于0.4V;

        对于输入端,状态1的判定要求为大于等于2.0V,状态0的判定要求为小于等于0.8V;

        对比输出、输入端的电压要求可知,为了保证双阀值判定的稳定性和抗噪性,输出端的电压要求仍比输入端的双阀值判定标准要严格,这点对于所有的数字系统接口标准是一样的,以后不再赘述。

LVTTL2V5

        LVTTL2V5的意思,即其内部有源器件的标准电源供给为2.5V,输出、输入情况如下:

        对于输出端,状态1的电压要求为大于等于2.0V,状态0的电压要求为小于等于0.2V;

        对于输入端,状态1的判定要求为大于等于1.7V,状态0的判定要求为小于等于0.7V

CMOS

        CMOS是Complementary Metal Oxide Semiconductor的英文缩写,从其命名就可以看出,这种接口电平标准的初衷是用于基于NMOS、PMOS组成的MOS管结构的数字系统之间的。

        工作于CMOS接口标准下的数字电路,其内部有源器件的标准电源供给为5V,输出、输入情况如下:

        对于输出端,状态1的电压要求为大于等于4.45V,状态0的电压要求为小于等于0.5V;

        对于输入端,状态1的判定要求为大于等于3.5V,状态0的判定要求为小于等于1.5V。

        CMOS与TTL接口相比,有了更大的噪声容限,并且其输入阻抗也远大于TTL输入阻抗。

LVCOMS

        同TTL一样,鉴于功耗和响应速度的考虑,CMOS也同样衍生出了LVCMOS接口标准,并且由于MOS管相对于三极管的导通门限更加低,因此LVCMOS比LVTTL更容易使用较低的电压进行通信。以下介绍几种目前常用的LVTTL标准:

LVCOMS33

        LVCMOS3V3的意思,即其内部有源器件的标准电源供给为3.3V,输出、输入情况如下:

        对于输出端,状态1的电压要求为大于等于3.2V,状态0的电压要求为小于等于0.4V;

        对于输入端,状态1的判定要求为大于等于2.0V,状态0的判定要求为小于等于0.7V。

LVCOMS25

        LVCMOS2V5的意思,即其内部有源器件的标准电源供给为2.5V,输出、输入情况如下:

        对于输出端,状态1的电压要求为大于等于2.0V,状态0的电压要求为小于等于0.4V;

        对于输入端,状态1的判定要求为大于等于1.7V,状态0的判定要求为小于等于0.7V。

LVCOMS18

        LVCMOS1V8的意思,即其内部有源器件的标准电源供给为VCC=1.8V,当然这是有一定容忍度的,不过与之前介绍的电平标准不同,这个容忍度会影响它的输出、输入情况,介绍如下:

        对于输出端,状态1的电压要求为大于等于VCC-0.45V(若VCC精确等于1.8V,则为1.35V),状态0的电压要求为小于等于0.45V;

        对于输入端,状态1的判定要求为大于等于0.65倍的VCC(若VCC精确等于1.8V,则为1.17V),状态0的判定要求为小于等于0.35倍的VCC(若VCC精确等于1.8V,则为0.63V)。

LVCOMS15

        LVCMOS1V5的意思,即其内部有源器件的标准电源供给为VCC=1.5V,它的容忍度也会影响到其输出、输入情况,介绍如下:

        对于输出端,LVCMOS1V5没有明确的要求,但是肯定是状态1越接近VCC越好,状态0越接近0V越好;

        对于输入端,状态1的判定要求为大于等于0.65倍的VCC(若VCC精确等于1.5V,则为0.975V),状态0的判定要求为小于等于0.35倍的VCC(若VCC精确等于1.5V,则为0.525V)。

LVCOMS12

        LVCMOS1V2的意思,即其内部有源器件的标准电源供给为VCC=1.2V,它的容忍度也会影响到其输出、输入情况,介绍如下:

        对于输出端,LVCMOS1V2也没有明确的要求,但是肯定是状态1越接近VCC越好,状态0越接近0V越好;

         对于输入端,状态1的判定要求为大于等于0.65倍的VCC(若VCC精确等于1.2V,则为0.78V),状态0的判定要求为小于等于0.35倍的VCC(若VCC精确等于1.2V,则为0.42V)。

LVDS

        低电压差分信号。其特性如下:LVDS的电压摆幅仅有350mV左右,电流也仅有3.5mA左右,而且又是差分传输,因此具有高速、超低功耗、低噪声和低成本等优良特性。

RS232

        RS232是美国电子工业协会EIA(全称为Electronic Industry Association)制定的一种串行物理接口标准。RS是Recommended Standard的缩写,中文意思为推荐标准,232为标识号。RS232总线标准共设有25条信号线,这里我们仅讨论其数字电平接口判定标准。

        RS232的标准电源供给为±12V或±15V,状态1的电压要求为-15V到-3V之间,状态0的电压要求为3V到15V之间。

RS485

        RS485相当于RS232的升级版,与LVDS类似,RS485也是采用差分的形式来传递信息(不过RS485是真的传了两路电压信号过去),因此抗干扰性要优于RS232。这里,我们同样仅关心其数字电平接口判定标准。

        RS485的状态1,其两线之间的电压差要求为2V到6V之间;状态0,其两线之间的电压差要求为-6V到-2V之间。

不同标准之间能否混连?

         有时候受限于两方的一些配置情况,可能并不能找出统一的电平标准来进行通信,那么此时,是不是除了设计接口转换电路板以外就没有别的方法了呢?并不是的,其实,有些不同的接口电平标准是可以兼容的。

         首先单端和差分是不可能兼容的,因为从物理连线上它们就不一样。但是对于同种类的接口,如果A电平标准的输出符合B电平标准的输入,那么就称A的输出可驱动B的输入,如果反之亦然,那么称A、B两种电平标准可相互驱动。

        例如,CMOS的输出是可以驱动TTL输入的,但是反之则不行,因为TTL的状态1输出仅为大于等于2.4V,并不能达到CMOS判决状态1所需要的大于等于3.5V;但是LVTTL3V3和LVCMOS3V3却可以相互驱动,因为它们的输出都能满足彼此的输入判定要求。

如何得知FPGA上面的引脚是上面标准

         电平标准分为板子内部和外部的拓展。面对芯片内部的引脚,通常我们使用VIVADO的TCL命令get_io_standards -of,具体方法如下图。当我们面对外部的拓展引脚,通常采用查询该外部拓展的电平手册的方式来进行。

以BANK117为例子,其支持的电平标准结果如下:

fpga引脚电平标准,FPGA,fpga开发

 文章来源地址https://www.toymoban.com/news/detail-769352.html

到了这里,关于FPGA电平标准的介绍的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • FPGA引脚说明

    UG1075-ZYNQ PINOUT PS_MIO TABLE TRM 文件,P794 一、 POR_OVERRIDE引脚(Power-On Reset Override)在FPGA上的功能,是用来让用户能够让FPGA在上电复位后继续保持在复位状态,而不是让设备立即开始运行。换句话说,当POR_OVERRIDE引脚被激活(通常是高电平)时,FPGA的Power-On Reset(POR)将被阻止或者说

    2024年04月10日
    浏览(36)
  • FPGA的引脚布局

    引脚布局简图 说明 1: FPGA的引脚都按BANK分组 ,明白了各个BANK上的引脚情况就明白了FPGA的整体引脚布局。 2:BNAK可以分为3类: (1) PS的BNAK ,较为固定 (2) 普通的IO BANK -HPHRHD (3) 高速口Quad - GTX 3:同一BANK的供电相同,不同BANK的供电可以不同。 4:还有1个BNAK-0,只有

    2024年02月06日
    浏览(46)
  • FPGA 原理图细节--画引脚

    BGA引脚表示 1.1 FPGA此引脚要正确和清晰,会在“Package Pin”中用到次 物理接口 1.2, MCU 只用管对应的GPIO 逻辑接口 就可以了 1.3,引脚名标识出bank, PS/PL, signal/differential 标识Bank电平 标识出对应Bank的电平,在电路设计中可以清晰的知道对应的脚位输出电平。在\\\"IO std\\\"也方便的选择

    2024年01月17日
    浏览(43)
  • Fpga开发笔记(一):高云FPGA芯片介绍,入手开发板套件、核心板和底板介绍

    若该文为原创文章,转载请注明原文出处 本文章博客地址:https://hpzwl.blog.csdn.net/article/details/135551179 红胖子网络科技博文大全:开发技术集合(包含Qt实用技术、树莓派、三维、OpenCV、OpenGL、ffmpeg、OSG、单片机、软硬结合等等)持续更新中… 上一篇:没有了 下一篇:《Fpga开

    2024年02月02日
    浏览(42)
  • cadence对FPGA不同bank交换引脚

    最近又用到FPGA,不同bank分配了很多IO,但是做PCB时候,需要重新分配引脚,于是就对pin进行swap。可以参考这个文章做swap。链接如下: https://blog.csdn.net/JingZhe_HengJing/article/details/111715180 然后就发现一个问题,只能对同一bank的引脚进行swap,不同bank的引脚不能swap。网上搜索了一

    2024年02月20日
    浏览(37)
  • Vivado时序约束TCL命令——获取引脚(get_pins)在FPGA设计中起着重要作用。本文将为大家详细介绍get_pins命令的语法和使用方法。

    Vivado时序约束TCL命令——获取引脚(get_pins)在FPGA设计中起着重要作用。本文将为大家详细介绍get_pins命令的语法和使用方法。 get_pins命令用于获取指定对象(Object)的引脚(Pin)列表。我们可以使用get_pins来获取具有特定命名约定的引脚(如CLOCK、RESET等),并通过对这些引

    2024年02月05日
    浏览(61)
  • xilinx7系列FPGA上电flash模式选择,及CFGBVS管脚电平选择

    xilinx7系列FPGA上电flash模式选择,主要是控制mode管脚电平。详情见下图:  若FPGA配置flash为spi flash类型,mode【2:0】=001;FPGA配置flash为bpi flash类型,mode【2:0】=010。 FPGA上电读bpi flash时序如图: FPGA上电读spi flash x1模式时序如图: Configuration Banks Voltage Select ( CFGBVS ) 配置组电压

    2024年02月16日
    浏览(62)
  • FPGA物理引脚,原理(Pacakge and pinout)-认知3

    画FPGA芯片引脚封装图(原理), 第一是参考开发板(根据一下描述了解总览) ,第二是研究Datasheet. ASCII Pinout File Zynq-7000 All Programmable SoC Packaging and Pinout(UG585) 1. Pacakge overview 1.1,PS引脚见UG585,Zynq-7000 All Programmable SoC Technical Reference Manual 1.2, Cofiguration 1.3, GPX资源, Some part

    2024年01月18日
    浏览(44)
  • SOC FPGA介绍及开发设计流程

    目录 一、SoC FPGA简介 二、SoC FPGA开发流程 2.1 硬件开发 2.2 软件开发          SOC FPGA是在FPGA架构中集成了基于ARM的硬核处理器系统(HPS),包括处理器、外设和存储器控制器。 相较于传统的仅有ARM处理器或 FPGA 的嵌入式芯片,SOC FPGA既拥有ARM处理器灵活高效的数据运算和事务

    2024年02月15日
    浏览(44)
  • 数字电路硬件设计系列(六)之FPGA配置引脚的设计

    不同的FPGA种类,配置的方式可能有稍许的差别。此处我们主要以7系列中 XC7A200TFBG676 为例,讲解FPGA的主要配置引脚。 工具制程工艺的不同,FPGA主要可以分为16nm、20nm、28nm。不停的制程工艺下,有不同的产品,详细将下: 在FPGA的设计过程中,将FPGA的IO口划分为不同的BANK,常见

    2024年02月06日
    浏览(72)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包