Flink去重计数统计用户数

这篇具有很好参考价值的文章主要介绍了Flink去重计数统计用户数。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.数据

订单表,分别是店铺id、用户id和支付金额

"店铺id,用户id,支付金额",
"shop-1,user-1,1",
"shop-1,user-2,1",
"shop-1,user-2,1",
"shop-1,user-3,1",
"shop-1,user-3,1",
"shop-1,user-1,1",
"shop-1,user-2,1",
"shop-1,user-4,1",
"shop-2,user-4,1",
"shop-2,user-4,1",
"shop-2,user-2,1"

2.可运行案例

import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.types.Row;


public class Test03 {
    public static void main(String[] args) throws Exception {
        // 1. 创建流式执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        // 2.创建表执行环境
        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);
        // 3.读取数据源
        SingleOutputStreamOperator<String> jsonStream = env
                .fromElements("shop-1,user-1,1",
                        "shop-1,user-2,1",
                        "shop-1,user-2,1",
                        "shop-1,user-3,1",
                        "shop-1,user-3,1",
                        "shop-1,user-1,1",
                        "shop-1,user-2,1",
                        "shop-1,user-4,1",
                        "shop-2,user-4,1",
                        "shop-2,user-4,1",
                        "shop-2,user-2,1"
                );
        // 4.流转换为表
        Table table = tableEnv.fromDataStream(jsonStream);

        // 5. 把注册为一个临时视图
        tableEnv.createTemporaryView("tableTmp", table);

        // 6.求每个商店的用户数
        Table table1 = tableEnv.sqlQuery("select shop_id,sum(num) as num,sum(gmv) as gmv from (select shop_id,user_id, 1 as num,sum(gmv) as gmv from (select SPLIT_INDEX(f0,',',0) as shop_id,SPLIT_INDEX(f0,',',1) as user_id,cast(SPLIT_INDEX(f0,',',2) as bigint) as gmv from tableTmp) t1 group by shop_id,user_id) t2 group by shop_id");

        // 7.打印
        tableEnv.toRetractStream(table1, Row.class).print(">>>>>>");

        // 8.执行
        env.execute("test");
    }
}

sql:

select
  shop_id,
  sum(num) as num,
  sum(gmv) as gmv
from
  (
    select
      shop_id,
      user_id,
      1 as num,
      sum(gmv) as gmv
    from
      (
        select
          SPLIT_INDEX(f0, ',', 0) as shop_id,
          SPLIT_INDEX(f0, ',', 1) as user_id,
          cast(SPLIT_INDEX(f0, ',', 2) as bigint) as gmv
        from
          tableTmp
      ) t1
    group by
      shop_id,
      user_id
  ) t2
group by
  shop_id

3.运行结果

>>>>>>:7> (true,+U[shop-2, 2, 3])

>>>>>>:1> (true,+U[shop-1, 4, 8])  

>>>>>>:7> (true,+I[shop-2, 1, 1])
>>>>>>:1> (true,+I[shop-1, 1, 1])
>>>>>>:1> (false,-U[shop-1, 1, 1])
>>>>>>:7> (false,-U[shop-2, 1, 1])
>>>>>>:1> (true,+U[shop-1, 2, 2])
>>>>>>:7> (true,+U[shop-2, 2, 2])
>>>>>>:1> (false,-U[shop-1, 2, 2])
>>>>>>:7> (false,-U[shop-2, 2, 2])
>>>>>>:1> (true,+U[shop-1, 1, 1])
>>>>>>:7> (true,+U[shop-2, 1, 1])
>>>>>>:1> (false,-U[shop-1, 1, 1])
>>>>>>:7> (false,-U[shop-2, 1, 1])
>>>>>>:7> (true,+U[shop-2, 2, 3])
>>>>>>:1> (true,+U[shop-1, 2, 3])
>>>>>>:1> (false,-U[shop-1, 2, 3])
>>>>>>:1> (true,+U[shop-1, 3, 4])
>>>>>>:1> (false,-U[shop-1, 3, 4])
>>>>>>:1> (true,+U[shop-1, 2, 3])
>>>>>>:1> (false,-U[shop-1, 2, 3])
>>>>>>:1> (true,+U[shop-1, 3, 5])
>>>>>>:1> (false,-U[shop-1, 3, 5])
>>>>>>:1> (true,+U[shop-1, 2, 3])
>>>>>>:1> (false,-U[shop-1, 2, 3])
>>>>>>:1> (true,+U[shop-1, 3, 6])
>>>>>>:1> (false,-U[shop-1, 3, 6])
>>>>>>:1> (true,+U[shop-1, 4, 7])
>>>>>>:1> (false,-U[shop-1, 4, 7])
>>>>>>:1> (true,+U[shop-1, 3, 6])
>>>>>>:1> (false,-U[shop-1, 3, 6])
>>>>>>:1> (true,+U[shop-1, 4, 8])

4.原理

Flink回撤流原理文章来源地址https://www.toymoban.com/news/detail-769562.html

到了这里,关于Flink去重计数统计用户数的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 商城的TPS与并发用户数是如何换算的?请编写商城的性能测试用例?

    商城的TPS与并发用户数的换算关系可以通过以下公式计算: TPS = 并发用户数 / 平均事务响应时间 其中,平均事务响应时间是指系统处理一个事务所需的平均时间。 下面是商城性能测试的一些用例示例: 用户登录: 目标:测试用户登录功能的性能和稳定性。 测试步骤:模拟

    2024年02月12日
    浏览(37)
  • 华为余承东表示「鸿蒙 HarmonyOS 2 升级用户数突破 1 亿」,意味着谷歌已被吓得瑟瑟发抖...

    本来全球手机市场有超过八成的份额为安卓占有,而苹果占有一成多。苹果每年的手机销量大约在2亿多部,如果鸿蒙系统每年增加2亿用户,那么鸿蒙系统就将如苹果iOS系统一样占有一成多的市场份额,这一成多市场份额正是从谷歌手里夺取的,那就代表着谷歌的安卓占有的

    2024年02月11日
    浏览(45)
  • 【性能测试】运维测试01之性能测试整体认知包括:TPS、请求响应时间、事务响应时间、并发用户数、吞吐量、吞吐率、点击率、资源使用率等性能指标详细介绍

    性能测试整体认知包括:TPS、请求响应时间、事务响应时间、并发用户数、吞吐量、吞吐率、点击率、资源使用率。 1.1 需求一 1.熟悉Linux、windows等操作系统,熟悉shell脚本; ⒉.熟悉jvm调优, tomcat调优等基础策略 3.熟悉mysq数据库,熟练掌握javascript、java、python、groovy等至少一门

    2024年02月16日
    浏览(42)
  • Flink流处理案例:实时数据去重

    在大数据处理领域,实时数据流处理是一项至关重要的技术,可以帮助我们实时分析和处理数据,从而更快地做出决策。Apache Flink是一款流处理框架,具有高性能和低延迟的特点,可以处理大规模的实时数据流。在本文中,我们将讨论Flink流处理的一个案例,即实时数据去重

    2024年04月27日
    浏览(36)
  • 大数据-玩转数据-Flink 海量数据实时去重

    大数据|阿里实时计算|Flink 借助redis的Set,需要频繁连接Redis,如果数据量过大, 对redis的内存也是一种压力;使用Flink的MapState,如果数据量过大, 状态后端最好选择 RocksDBStateBackend; 使用布隆过滤器,布隆过滤器可以大大减少存储的数据的数据量。 如果想判断一个元素是不

    2024年02月07日
    浏览(38)
  • flink数据流 单(kafka)流根据id去重

    2024年02月15日
    浏览(43)
  • 使用Flink完成流数据统计

    所有流计算统计的流程都是: 1、接入数据源 2、进行多次数据转换操作(过滤、拆分、聚合计算等) 3、计算结果的存储 其中数据源可以是多个、数据转换的节点处理完数据可以发送到一个和多个下一个节点继续处理数据 Flink程序构建的基本单元是stream和transformation(DataSet实质

    2024年02月05日
    浏览(40)
  • 大数据-玩转数据-Flink 网站UV统计

    在实际应用中,我们往往会关注,到底有多少不同的用户访问了网站,所以另外一个统计流量的重要指标是网站的独立访客数(Unique Visitor,UV)。 对于UserBehavior数据源来说,我们直接可以根据userId来区分不同的用户。 将userid放到SET集合里面,统计集合长度,便可以统计到网

    2024年02月11日
    浏览(48)
  • 【Flink实战】Flink 商品销量统计-实战Bahir Connetor实战存储 数据到Redis6.X

    🚀 作者 :“大数据小禅” 🚀 文章简介 :Flink 商品销量统计-实战Bahir Connetor实战存储 数据到Redis6.X 🚀 欢迎小伙伴们 点赞 👍、 收藏 ⭐、 留言 💬 Flink怎么操作Redis Flink怎么操作redis? 方式一:自定义sink 方式二:使用connector Redis Sink 核心是RedisMapper 是一个接口,使用时要

    2024年02月06日
    浏览(42)
  • XL-LightHouse 与 Flink 和 ClickHouse 流式大数据统计系统

    一个Flink任务只能并行处理一个或少数几个数据流,而XL-LightHouse一个任务可以并行处理数万个、几十万个数据流; 一个Flink任务只能实现一个或少数几个数据指标,而XL-LightHouse单个任务就能支撑大批量、数以万计的数据指标。 1、XL-LightHouse :  1、再也不需要用 Flink、Spark、

    2024年02月09日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包