改进的 A*算法的路径规划(路径规划+代码+教程)

这篇具有很好参考价值的文章主要介绍了改进的 A*算法的路径规划(路径规划+代码+教程)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

更多视觉和自动驾驶项目请见:
小白学视觉
自动驾驶项目
自动驾驶项目大集合-代码

引言

近年来,随着智能时代的到来,路径规划技术飞快发展,已经形成了一套较为成熟的理论体系。其经典规划算法包括 Dijkstra 算法、A算法、D算法、Field D算法等,然而传统的路径规划算法在复杂的场景的表现并不如人意,例如复杂的越野环境。针对越野环境规划问题以及规划算法的优劣性,选择改进 A算法来进行越野环境路径规划
通过越野栅格环境建模、通行方向变化惩罚、局部区域复杂度惩罚和路径平滑的方法对传统 A*算法进行改进,以满足复杂越野环境下,不同类型的智能车辆和不同任务的安全行驶、高效通行综合要求。

重要代码

###############构造地图################
#宽高W,H。
class Array2D:
    #初始化
    def __init__(self,w,h):
        self.w=w
        self.h=h
        self.data=[]
        self.data=[[0.0 for y in range(h)] for x in range(w)]
 
    #显示地图
    def showArray2D(self):
        for y in range(self.h):
            for x in range(self.w):
                print(self.data[x][y],end=' ')
            print("")
    
    #获得任意节点信息 ,__getitem__()魔法函数作用为当实例化对象map进行map[key]操作上自动调用。
    def __getitem__(self, item):
        return self.data[item]

###############创建点类################
class Point:
    #初始化
    def __init__(self,x,y):
        self.x=x
        self.y=y
        
    #判断是否同一个点
    def __eq__(self, other):
        if self.x==other.x and self.y==other.y:
            return True
        return False
    
    #打印点信息
    def __str__(self):
        return "x:"+str(self.x)+",y:"+str(self.y)
    
    

传统 A*算法

在启发式搜索算法中, A算法是其中最为典型的代表,它在全局路径规划算法中,具有快速、高效和准确的优点,因此在智能车辆和工业机器人的路径规划问题上得到了广泛的应用。针对规划路径的需求和任务的要求,许多学者对传统 A算法进行改进,例如:路径的长度、规划效率和拐点数等方面。(下图为传统A*算法流程)
astar算法的改进版本,计算机视觉感知,路径规划,代码,A星算法

传统 A*算法缺点分析

虽然传统的 A算法在一些简单的场景具有一定的有效性,但是实际的用途中,环境复杂性对于算法实时的要求,传统的 A算法并无法满足要求。只有对传统算法的局限性进行深入了解分析才能更好的在传统方法之上进行更进一步的改进,因此本小节深入分析传统 A*算法的局限性和不足,具体有:

  • (1)栅格地图建模的不足:

首先要意识到的是处理的是离散数据,而不是现实世界中的“连续”地形。采样的数字地形图像是真实地形的近似值,应该在一个理想的高分辨率采样。数字地形图像的分辨率越高,对真实地形的描述越逼真,寻径精度也越高。然而,在分辨率上存在一个上限,超过这个上限后,道路就不再更加精确,并且会不必要地增加寻径算法的运行时间。而且传统的建模方式只限定为可行驶区域和障碍物区域,然而
现实世界环境是及其复杂的,例如可行驶区域可区分为不同道路,沙地、草地、土质路面等等;障碍物也区分有树、行人、车辆建筑物等等。

  • (2)邻域节点选择不足:

为了找到从起始节点到目标节点的路径,我们必须定义一种选择后续节点的方式。我们可以从一个给定的位置移动到哪里?在现实世界中,一个人可以朝着喜欢的任何方向前进,但在数字地形图上,我们的选择更受限制。传统的 A*算法中有两种常见的方法:4 个邻接和 8 个邻接。4 个邻接限制移动在北、南、西、东四64 个主要风向。8 邻接的移动更自由,因为它除了 4 邻接的方向外,还可以在东北、西北、西南和东南方向移动。

  • (3)算法无法自适应满足不同任务要求:

在不同的任务要求中,有的任务要保证路径的最短,则设计预估代价小于真实代价,但是效率低下;有的任务要保证效率的高效,设计预估代价大于真实代价,但是规划的路径不是最优。

  • (4)对于大地图算法计算效率不足:

对于现实的环境场景,可能寻找道路的搜索空间非常大,这意味着必须采取措施确保内存不会耗尽,或者搜索不会花费过多的时间运行。即使是一个相对较小的300 × 300 像素的地形图也有 9 万个节点的搜索空间。

越野环境下的 A*算法

障碍物模型:
传统的 A*算法的构建方式中最普遍应用的是栅格法,其基本的思路是把智能车辆的工作空间分割为尺寸一致的网格,并通过数据矩阵来记录环境数据。常规的栅格算法把物理环境严格区分为自由区域和障碍物区域,从而使得数值矩阵能够简化为 0-1 矩阵,0 为自由空间,1 为障碍物空间。如假设智能车的工作空间为
R C ,M 为数值矩阵,表示所有的环境信息,则常规的环境模型可以表示为。
astar算法的改进版本,计算机视觉感知,路径规划,代码,A星算法
很明显,常规的栅格模型是无法模拟出真实复杂的越野环境,因此本文研究越
野环境的真实场景,建立多层次栅格模型,将越野环境模型细分为障碍物模型,威
胁模型和道路模型,如图 所示。astar算法的改进版本,计算机视觉感知,路径规划,代码,A星算法
威胁模型
astar算法的改进版本,计算机视觉感知,路径规划,代码,A星算法

子节点优化选择策略

(1)子节点选择方式

为了找到从起始点到终点的路径,需定义一种可以选择后续节点的方式。在A*算法中两种常见的方法为 4-邻接(见图 5-7(a))和 8-邻接 (见图 5-7(b)),但考虑到在复杂越野环境上,我们希望智能车辆允许更多的自由运动来更好规避危险,因此本文选择 16-邻接(见图 5-7©)。如图 5-8 所示,4-邻接规划的路径具有很多的直角拐点且路径最长,其次是 8-邻接规划的路径,而 16-邻接规划的路径平滑、拐点数少、路径短,适合复杂越野环境智能车的需求。
astar算法的改进版本,计算机视觉感知,路径规划,代码,A星算法

(2)优化子节点选择

传统 A*算法在子节点选取上,仅考察子节点周围是否为障碍物,而未考察子节点与障碍物位置的相关性,从而规划出路线存在斜着通过障碍物栅格顶点的问题,导致车辆可能与障碍物发生碰撞。因为本文中所构建环境模型具有更危险的威胁物存在,所以优化了子节点的选择规则。
如图 5-9,为 16 个子节点分布图。本文结合越野环境栅格地图设计的子节点选择规则为:

  • 1:若子节点 4 或子节点 12 具有威胁(在越野环境栅格地图中值1),则子节点

  • 2、子节点 6、子节点 3、子节点 5 或子节点 13、子节点 9、子节点 14、子节点11 不作为预选点。

  • 3:若子节点 16 或子节点 8 具有威胁,则子节点 2、子节点 13、子节点 15、 子节点 1 或子节点 6、子节点 9、子节点

  • 4、子节点 7 不作为预选点。

  • 5、均无具威胁,则不做处理。 优化子节点选择后,规划后的路径避开具有威胁栅格的顶点,避免智能车辆

astar算法的改进版本,计算机视觉感知,路径规划,代码,A星算法

代码部分

###############创建A-Star类############
class AStar:
    
    # 描述AStar算法中的节点数据
    class Node:  
        #初始化
        def __init__(self, point, startPoint,endPoint, g=0,w=1,p=1):
            self.point = point  # 自己的坐标
            self.father = None  # 父节点
            self.g = g       # g值,g值在用到的时候会重新算
            
            # 计算h值,采用曼哈顿距离
            #self.h = (abs(endPoint.x - point.x) + abs(endPoint.y - point.y)) * 10  
            
            #采用欧几里得距离
            #self.h = math.pow((math.pow((endPoint.x - point.x),2) + math.pow((endPoint.y - point.y),2)),0.5)*10
            
            #采用对角距离
            pp=(1-p)+0.2*math.exp((math.pow((math.pow((endPoint.x - point.x),2) + math.pow((endPoint.y - point.y),2)),0.5))/(math.pow((math.pow((endPoint.x - startPoint.x),2) + math.pow((endPoint.y - startPoint.y),2)),0.5)))
            Diagonal_step = min((endPoint.x - point.x),(endPoint.y - point.y))
            straight_step = (abs(endPoint.x - point.x) + abs(endPoint.y - point.y)) - 2*Diagonal_step
            self.h  =(straight_step + math.pow(2,0.5)*Diagonal_step)*10*pp
            #print(pp)


            
    #初始化A-start
    def __init__(self, map2d, startPoint, endPoint, passTag=1.0):#map2d地图信息,startPoint起点, endPoint终点, passTag=1.0为不可行驶区域

        # 开启表
        self.openList = []
        # 关闭表
        self.closeList = []
        # 寻路地图
        self.map2d = map2d
        # 起点终点
        if isinstance(startPoint, Point) and isinstance(endPoint, Point):
            self.startPoint = startPoint
            self.endPoint = endPoint
        else:
            self.startPoint = Point(*startPoint)
            self.endPoint = Point(*endPoint)
 
        # 不可行走标记
        self.passTag = passTag
 
    def getMinNode(self):
        """
        获得openlist中F值最小的节点
        :return: Node
        """
        currentNode = self.openList[0]
        for node in self.openList:
            if node.g + node.h < currentNode.g + currentNode.h:
                currentNode = node
        return currentNode#返回最小代价的点
 

结果对比

astar算法的改进版本,计算机视觉感知,路径规划,代码,A星算法
astar算法的改进版本,计算机视觉感知,路径规划,代码,A星算法

越野环境路径规划对比

astar算法的改进版本,计算机视觉感知,路径规划,代码,A星算法

敏感度衡量对比

astar算法的改进版本,计算机视觉感知,路径规划,代码,A星算法文章来源地址https://www.toymoban.com/news/detail-769715.html

结论

  • 本节针对越野场景路径规划问题,采用栅格法建立障碍物、威胁物和越野道路模型,模拟真实的越野环境场景。
  • 引入方向变化惩罚和局部区域复杂度惩罚来优化A*算法,使算法规划出的路径更平滑,算法效率更高效。采用改进 Floyd
    算法对路径进行双向平滑,并且进行了防碰撞处理,来确保规划出路径的安全可靠性。
  • 仿真结果表明,所改进的 A*算法与传统算法相比较,效率提高了 30%,拐点数减少了 4 倍,所提算法能够在越野环境多重因素综合影响以及不同车辆性能和任务的要求下快速的规划出安全的路径

如需帮助请看左下角推广信息

到了这里,关于改进的 A*算法的路径规划(路径规划+代码+教程)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【路径规划】A*算法方法改进思路简析

    A 算法作为经典的传统路径规划算法,在计算全局最优路径有着较好的性能,在机器人导航等领域上起着关键作用,针对这点出发,将对A 算法进行基本功能实现,以分析其优缺点,并在此基础上进行改进。改进的内容为,将针对特定地图的相关特点,设计合理的预估函数,设

    2024年01月15日
    浏览(42)
  • 无人机山地路径规划算法:改进的A*算法

    无人机山地路径规划算法:改进的A*算法 无人机在山地环境中的路径规划是一个具有挑战性的问题,因为山地地形的复杂性和不可预测性。为了有效地规划无人机在山地中的路径,我们可以采用改进的A*算法。 A*算法是一种常用的启发式搜索算法,它能够找到从起点到目标点

    2024年02月06日
    浏览(40)
  • 改进灰狼算法实现机器人栅格地图路径规划

    改进灰狼算法实现机器人栅格地图路径规划 在机器人路径规划领域中,灰狼算法是一种具有全局搜索能力的优化算法。为了进一步提高其性能,可以结合和声算法对其进行改进。本文将介绍如何使用改进的灰狼算法实现机器人在栅格地图上的路径规划,并提供相应的MATLAB源代

    2024年02月06日
    浏览(59)
  • 路径规划算法3 改进的人工势场法(Matlab)

    目录 传统人工势场 引力势场 斥力势场  合力势场  传统人工势场法存在的问题  改进的人工势场函数  Matlab代码实现 参考链接: [1]朱伟达. 基于改进型人工势场法的车辆避障路径规划研究[D]. 江苏大学, 2017. 1986年Khatib首先提出人工势场法,并将其应用在机器人避障领域。该

    2024年02月11日
    浏览(39)
  • 【移动机器人】基于JADE改进差分算法的多AGV路径规划

      最近帮同学做个东西,但是问题在于是之前从没接触过的领域–移动机器人轨迹规划,虽然也是搞机器人的,但是对 AGV 那边的情况是一无所知,这次能完成也算是挑战成功。此次任务目的是多辆AGV小车搬运货物,保证搬运总时间最短并且小车与货物之间,小车与小车之

    2024年02月10日
    浏览(49)
  • 基于球形向量改进的粒子群算法PSO的无人机3D路径规划

    9-顶刊复现基于球形向量改进的粒子群算法PSO的无人机3D路径规划,spherical vector based particle swarm optimization,MATLAB编写,包含参考文献,内部有注释,可自行修改起点终点和障碍物位置。 输出结果为前两张图。 注意预先在matlab中安装curve fitting toolbox,在matlab当中可以直接安装

    2024年04月26日
    浏览(53)
  • 【一种基于改进A*算法和CSA-APF算法的混合路径规划方法】—— 论文阅读

    论文题目: A Hybrid Path Planning Method Based on Improved A∗ and CSA-APF Algorithms 1 摘要 大问题:复杂动态环境下全局路径规划难以避开动态障碍物,且局部路径容易陷入局部最优的问题 问题1:针对A*算法产生冗余路径节点和非光滑路径 解决方案:引入加权启发函数、去除冗余路径节点

    2024年04月23日
    浏览(42)
  • 路径规划算法:基于鸽群优化的路径规划算法- 附代码

    摘要:本文主要介绍利用智能优化算法鸽群算法来进行路径规划。 鸽群算法原理请参考:https://blog.csdn.net/u011835903/article/details/109774886 1.1 环境设定 在移动机器人的路径优化中,每个优化算法的解代表机器人的一条运动路径。优化算法会通过优化计算在众多路径中找出一条最

    2024年02月08日
    浏览(46)
  • 路径规划算法:基于和声优化的路径规划算法- 附代码

    摘要:本文主要介绍利用智能优化算法和声算法来进行路径规划。 和声算法原理请参考:https://blog.csdn.net/u011835903/article/details/118724731 1.1 环境设定 在移动机器人的路径优化中,每个优化算法的解代表机器人的一条运动路径。优化算法会通过优化计算在众多路径中找出一条最

    2024年02月08日
    浏览(46)
  • 路径规划算法:基于蝠鲼觅食优化的路径规划算法- 附代码

    摘要:本文主要介绍利用智能优化算法蝠鲼觅食算法来进行路径规划。 蝠鲼觅食算法原理请参考:https://blog.csdn.net/u011835903/article/details/112390588 1.1 环境设定 在移动机器人的路径优化中,每个优化算法的解代表机器人的一条运动路径。优化算法会通过优化计算在众多路径中找

    2024年02月07日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包