【BXZ_231228】使用Sklearn Kmeans及RFM对淘宝客户进行分类关怀

这篇具有很好参考价值的文章主要介绍了【BXZ_231228】使用Sklearn Kmeans及RFM对淘宝客户进行分类关怀。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

【BXZ_231228】使用Sklearn Kmeans及RFM对淘宝客户进行分类关怀,04_机器学习,sklearn,kmeans,分类

import random
import string
from datetime import datetime

def generate_random_string(length=3):
    characters = string.ascii_uppercase
    return ''.join(random.choice(characters) for _ in range(length))

def generate_timestamped_string(separator='_'):
    timestamp = datetime.now().strftime('%y%m%d') # %H%M%S
    random_part = generate_random_string(length=3)
    return random_part+separator+timestamp

timestamped_string = generate_timestamped_string()
print('【{0}】'.format(timestamped_string))

【Talk is cheap】文章来源地址https://www.toymoban.com/news/detail-769982.html

import warnings
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] # 显示中文
plt.rcParams['axes.unicode_minus'] = False # 显示负号
warnings.filterwarnings("ignore")
%matplotlib inline

...
Index(['买家会员名', '买家实际支付积分', '买家实际支付金额', '买家应付货款', '买家应付邮费', '买家支付宝账号',
       '买家支付积分', '买家服务费', '买家留言', '修改后的sku', '修改后的收货地址', '分阶段订单信息', '卖家服务费',
       '发票抬头', '含应开票给个人的个人红包', '天猫卡券抵扣', '定金排名', '宝贝总数量', '宝贝标题 ', '宝贝种类 ',
       '店铺Id', '店铺名称', '异常信息', '总金额', '打款商家金额', '支付单号', '支付详情', '收货人姓名',
       '收货地址', '新零售交易类型', '新零售发货门店id', '新零售发货门店名称', '新零售导购门店id', '新零售导购门店名称',
       '是否上传合同照片', '是否上传小票', '是否代付', '是否手机订单', '是否是O2O交易', '物流公司', '物流单号 ',
       '特权订金订单id', '确认收货时间', '联系手机', '联系电话 ', '订单付款时间', '订单关闭原因', '订单创建时间',
       '订单备注', '订单状态', '运送方式', '返点积分', '退款金额', '数据采集时间'],


...

from sklearn.cluster import KMeans

# 将聚类结果添加到原始数据中
data['Cluster'] = labels


0	13015181676	55.86	1	0
1	13019108165	0.00	2	0
2	13020140119	95.76	2	0
3	13022508850	48.86	1	0
4	13026161372	268.00	1	0


# 计算RFM得分
rfm_table['R'] = rfm_table['Recency'].apply(rfm_score, args=('Recency', quantiles))
rfm_table['F'] = rfm_table['Frequency'].apply(rfm_score, args=('Frequency', quantiles))
rfm_table['M'] = rfm_table['Monetary'].apply(rfm_score, args=('Monetary', quantiles))

# 输出RFM分析结果
print(rfm_table)


top_customers[rfm_table['RFM']>10]


403109394@qq.com	2463	3	1206.0	4	4	4	12
1003673371@qq.com	2406	4	1474.0	4	4	4	12
13524685268	2306	5	804.0	4	4	4	12
794378248@qq.com	2425	3	763.5	4	4	4	12
13467712448	2453	3	670.0	4	4	4	12
...	...	...	...	...	...	...	...
313137525@qq.com	2249	7	2546.0	3	4	4	11
15976850599	2204	3	867.0	3	4	4	11
18580706707	2217	15	4020.0	3	4	4	11
18771060321	2445	2	368.0	4	3	4	11
15997278777	2478	2	1034.4	4	3	4	11

到了这里,关于【BXZ_231228】使用Sklearn Kmeans及RFM对淘宝客户进行分类关怀的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 理论+实操|一文掌握 RFM 模型在客户数据洞察平台内的落地实战

    确定用户价值是整个用户运营过程中极其重要的一环。传统的工作流程中,业务人员向数据部门提出数据需求,等待返回结果后再进行价值分析是主要的准备工作,但这个过程非常耗时。为了提高工作效率,业务人员经常会基于自己对用户的理解制定一系列的运营策略,但完

    2024年02月07日
    浏览(74)
  • RFM分析 | 一招搞定精细化客户管理,盒马鲜生等企业都在用

    阿里巴巴CEO张勇在盒马鲜生的管理会上说:“进行RFM用户分析 ,以数据驱动,精细化用户运营是核心。新模式要大胆假设小心求证,验证有效以后再快速复制。”RFM与精细化管理有什么关系? 1 什么是RFM分析? 2 如何应用RFM分析对用户细分? 3 盒马RFM 分析案例 4 RFM总结 互联

    2024年01月20日
    浏览(37)
  • 使用sklearn函数对模型进行交叉验证

    交叉验证(Cross-Validatio),是用于在驯良过程中对训练模型的性能和参数进行评估选择的技术。 它的意义在于能够充分利用优先的数据集,减少数据分布不均匀以及随机性带来的模型评估误差。 交叉验证的作用就是将数据集分割成多个自己进行多次训练,每次训练的训练集

    2024年02月12日
    浏览(35)
  • Sklearn-使用SVC对iris数据集进行分类

    使用SVC对iris数据集进行分类预测 涉及内容包含: 数据集的加载,训练集和测试集的划分 训练svc模型,对测试集的预测 输出混淆矩阵和分类报告 使用Pipeline执行操作 加载数据集 用DataFrame展示数据 划分训练集和测试集合 sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) tar

    2024年02月14日
    浏览(32)
  • python:使用sklearn库的KFold模块进行随机森林十折交叉验证

    作者:CSDN @ _养乐多_ 本文记录了使用sklearn库的KFold模块进行随机森林十折交叉验证的代码。 一、代码 二、代码解释 在上述代码中 首先,导入了RandomForestClassifier(随机森林分类器)、cross_val_score(交叉验证函数)、KFold(交叉验证生成器)和load_iris(加载鸢尾花数据集)等

    2024年01月16日
    浏览(38)
  • 基于 R 对卫星图像进行无监督 kMeans 分类

            本文将向您展示如何使用 R 对卫星图像执行非常基本的 kMeans 无监督分类。我们将在 Sentinel-2 图像的一小部分上执行此操作。         Sentinel-2 是由欧洲航天局发射的一颗卫星,其数据可在此处免费访问。         我要使用的图像显示了 Neusiedl 湖的北部(奥

    2024年02月13日
    浏览(47)
  • (完全解决)如何输入一个图的邻接矩阵(每两个点的亲密度矩阵affinity),然后使用sklearn进行谱聚类

    背景 网上倒是有一些关于使用sklearn进行谱聚类的教程,但是这些教程的输入都是一些点的集合,然后根据谱聚类的原理,其会每两个点计算一次亲密度(可以认为两个点距离越大,亲密度越小),假设一共有N个点,那么就是 N*N 个亲密度要计算,这特别像什么?图里面的邻

    2024年02月07日
    浏览(44)
  • 使用ChatGPT进行电子商务客户服务

    无论您今天处于哪个行业,ChatGPT似乎都会对您开展业务的方式产生重大影响——电子商务领域也不例外。那么ChatGPT会在客户服务中取代人类吗? 今天使用ChatGPT进行电子商务客户服务将无法提供客户需要或期望的卓越而准确的响应。人工智能有一些严重的局限性(如其制造商

    2023年04月21日
    浏览(42)
  • 基于爬虫+词云图+Kmeans聚类+LDA主题分析+社会网络语义分析对大唐不夜城用户评论进行分析

      🤵‍♂️ 个人主页:@艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收藏 📂加关注+ 目录 一、项目简介 二、实验过程 2.1获取数据 2.2情感分析 2.3TF-IDF+Kmeans聚类分析 2.4LDA主题

    2024年02月08日
    浏览(54)
  • 使用Go语言的HTTP客户端进行负载均衡

    负载均衡是分布式系统中的重要概念,它用于将流量分散到多个服务器或服务上,以实现更好的性能、可靠性和可扩展性。在Go语言中,可以使用HTTP客户端进行负载均衡,确保请求被均匀地分配到多个服务器或服务上。 下面是一个使用Go语言HTTP客户端进行负载均衡的示例:

    2024年01月21日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包