算法(3)——二分查找

这篇具有很好参考价值的文章主要介绍了算法(3)——二分查找。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、什么是二分查找

二分查找也称折半查找,是在一组有序(升序/降序)的数据中查找一个元素,它是一种效率较高的查找方法。

二、二分查找的原理

1、查找的目标数据元素必须是有序的。没有顺序的数据,二分法就失去意义。


2、数据元素通常是数值型,可以比较大小。


3、将目标元素和查找范围的中间值做比较(如果目标元素=中间值,查找结束),将目标元素分到较大/或者较小的一组。


4、通过分组,可以将查找范围缩小一半。


5、重复第三步,直到目标元素=新的范围的中间值,查找结束。

三、二分查找模板 

1、朴素二分查找模板

算法(3)——二分查找,算法,leetcode,c++

2、一般二分查找模板算法(3)——二分查找,算法,leetcode,c++

四、二分查找经典OJ题

4、1 二分查找

704. 二分查找 - 力扣(LeetCode)

1、题目描述

算法(3)——二分查找,算法,leetcode,c++

2、算法思路文章来源地址https://www.toymoban.com/news/detail-769986.html

a. 定义 left right 指针,分别指向数组的左右区间。
b. 找到待查找区间的中间点 mid ,找到之后分三种情况讨论:
        i. arr[mid] == target 说明正好找到,返回 mid 的值

        ii. arr[mid] > target 说明 [mid, right] 这段区间都是⼤于 target 的,因此舍去右边区间,在左边 [left, mid -1] 的区间继续查找,即让 right = mid - 1 ,然后重复 2 过程;

        iii. arr[mid] < target 说明 [left, mid] 这段区间的值都是⼩于 target 的,因此舍去左边区间,在右边 [mid + 1, right] 区间继续查找,即让 left = mid + 1 ,然后重复 2 过程;
c. left right 错开时,说明整个区间都没有这个数,返回 -1

3、算法代码

class Solution {
public:
    int search(vector<int>& nums, int target) 
    {
        int left=0,right=nums.size()-1;
        while(left<=right)
        {
            int mid=left+(right-left)/2;
            if(nums[mid]>target)
            {
                right=mid-1;
            }
            else if(nums[mid]<target)
            {
                left=mid+1;
            }
            else{
                return mid;
            }
        }
        return -1;
    }
};

4、2 在排序数组中查找元素的第⼀个和最后⼀个位置

34. 在排序数组中查找元素的第一个和最后一个位置 - 力扣(LeetCode)

1、题目描述:

算法(3)——二分查找,算法,leetcode,c++

2、算法思路:

⽤的还是⼆分思想,就是根据数据的性质,在某种判断条件下将区间⼀分为⼆,然后舍去其中⼀个
区间,然后再另⼀个区间内查找;
⽅便叙述,⽤ x 表⽰该元素, resLeft 表⽰左边界, resRight 表⽰右边界。
寻找左边界:
我们注意到以左边界划分的两个区间的特点:
左边区间 [left, resLeft - 1] 都是⼩于 x 的;
右边区间(包括左边界) [resLeft, right] 都是⼤于等于 x 的;
因此,关于 mid 的落点,我们可以分为下⾯两种情况:
当我们的 mid 落在 [left, resLeft - 1] 区间的时候,也就是 arr[mid] < target 。说明 [left, mid] 都是可以舍去的,此时更新 left mid + 1 的位置, 继续在 [mid + 1, right] 上寻找左边界;
mid 落在 [resLeft right] 的区间的时候,也就是 arr[mid] >= target 。 说明 [mid + 1, right] (因为 mid 可能是最终结果,不能舍去)是可以舍去的,此时 更新 right mid 的位置,继续在 [left, mid] 上寻找左边界;
由此,就可以通过⼆分,来快速寻找左边界;
注意:这⾥找中间元素需要向下取整。
因为后续移动左右指针的时候:
左指针: left = mid + 1 ,是会向后移动的,因此区间是会缩⼩的;
右指针: right = mid ,可能会原地踏步(⽐如:如果向上取整的话,如果剩下 1,2 两个元
素, left == 1 right == 2 mid == 2 。更新区间之后, left right mid 的 值没有改变,就会陷⼊死循环)。
因此⼀定要注意,当 right = mid 的时候,要向下取整。
寻找右边界思路:
resRight 表⽰右边界;
我们注意到右边界的特点:
左边区间 (包括右边界) [left, resRight] 都是⼩于等于 x 的;
右边区间 [resRight+ 1, right] 都是⼤于 x 的;
因此,关于 mid 的落点,我们可以分为下⾯两种情况:
当我们的 mid 落在 [left, resRight] 区间的时候,说明 [left, mid - 1](mid 不可以舍去,因为有可能是最终结果) 都是可以舍去的,此时更新 left mid 的位置;
当 mid 落在 [resRight+ 1, right] 的区间的时候,说明 [mid, right] 内的元素 是可以舍去的,此时更新 right mid - 1 的位置;
由此,就可以通过⼆分,来快速寻找右边界;
注意:这⾥找中间元素需要向上取整。
因为后续移动左右指针的时候:
左指针: left = mid ,可能会原地踏步(⽐如:如果向下取整的话,如果剩下 1,2 两个元
素, left == 1 right == 2 mid == 1 。更新区间之后, left right mid 的值 没有改变,就会陷⼊死循环)。
右指针: right = mid - 1 ,是会向前移动的,因此区间是会缩⼩的; 因此⼀定要注意,当 right = mid 的时候,要向下取整。

3、算法代码

class Solution {
public:
    vector<int> searchRange(vector<int>& nums, int target) 
    {
        int begin=0;
        if(nums.size()==0) return {-1,-1};
        int left=0,right=nums.size()-1;
        while(right>left)   //找左端点
        {
            int mid=left+(right-left)/2;
            if(nums[mid]<target) left=mid+1;
            else right=mid;
        }
        if(nums[left]!=target) return {-1,-1};
        else begin=left;
        left=0,right=nums.size()-1;
        while(right>left)
        {
            int mid=left+(right-left+1)/2;
            if(nums[mid]<=target) left=mid;
            else right=mid-1;
        }
        return {begin,right};
    }
};

4、3 搜索插入位置

35. 搜索插入位置 - 力扣(LeetCode)

1、题目描述

算法(3)——二分查找,算法,leetcode,c++

2、算法思路

a. 分析插⼊位置左右两侧区间上元素的特点:
设插⼊位置的坐标为 index ,根据插⼊位置的特点可以知道:
[left, index - 1] 内的所有元素均是⼩于 target 的;
[index, right] 内的所有元素均是⼤于等于 target 的。
b. left 为本轮查询的左边界, right 为本轮查询的右边界。根据 mid 位置元素的信息,分析下⼀轮查询的区间:
nums[mid] >= target 时,说明 mid 落在了 [index, right] 区间上,
mid 左边包括 mid 本⾝,可能是最终结果,所以我们接下来查找的区间在 [left, mid] 上。因此,更新 right mid 位置,继续查找。
nums[mid] < target 时,说明 mid 落在了 [left, index - 1] 区间上, mid 右边但不包括 mid 本⾝,可能是最终结果,所以我们接下来查找的区间在 [mid + 1, right] 上。因此,更新 left mid + 1 的位置,继续查找。
c. 直到我们的查找区间的⻓度变为 1 ,也就是 left == right 的时候, left 或者
right 所在的位置就是我们要找的结果。

3、算法代码

class Solution {
public:
    int searchInsert(vector<int>& nums, int target) 
    {
        int left=0,right=nums.size()-1;
        while(right>left)
        {
            int mid=left+(right-left)/2;
            if(nums[mid]<target) left=mid+1;
            else right=mid;
        }
        if(nums[left]<target) return right+1;
        return right;
    }
};

4、4 X的平方根

69. x 的平方根 - 力扣(LeetCode)

1、题目描述

算法(3)——二分查找,算法,leetcode,c++

2、算法思路

依次枚举 [0, x] 之间的所有数 i
(这⾥没有必要研究是否枚举到 x / 2 还是 x / 2 + 1 。因为我们找到结果之后直接就返回
了,往后的情况就不会再判断。反⽽研究枚举区间,既耽误时间,⼜可能出错)
如果 i * i == x ,直接返回 x
如果 i * i > x ,说明之前的⼀个数是结果,返回 i - 1
由于 i * i 可能超过 int 的最⼤值,因此使⽤ long long 类型

3、算法代码

class Solution {
public:
    int mySqrt(int x) 
    {
        if(x<1) return 0;
        int left=1,right=x;
        while(right>left)
        {
            long long mid=left+(right-left+1)/2;
            if(mid*mid>x) right=mid-1;
            else left=mid;
        }
        return left;
    }
};

4、5 山峰数组的峰顶

852. 山脉数组的峰顶索引 - 力扣(LeetCode)

1、题目描述

算法(3)——二分查找,算法,leetcode,c++

2、算法思路

峰顶的特点:⽐两侧的元素都要⼤。
因此,我们可以遍历数组内的每⼀个元素,找到某⼀个元素⽐两边的元素⼤即可
3、算法代码
class Solution {
public:
    int peakIndexInMountainArray(vector<int>& arr) 
    {
        for(int i=1;i<arr.size()-1;i++)
        {
            if(arr[i]>arr[i-1]&&arr[i]>arr[i+1])
            {
                return i;
            } 
            
        }
        return 0;
    }
};

4、5 寻找峰值   

162. 寻找峰值 - 力扣(LeetCode)

1、题目描述

算法(3)——二分查找,算法,leetcode,c++

2、算法思路寻找⼆段性:

任取⼀个点 i ,与下⼀个点 i + 1 ,会有如下两种情况:
arr[i] > arr[i + 1] :此时「左侧区域」⼀定会存在⼭峰(因为最左侧是负⽆穷),那么我们可以去左侧去寻找结果;
arr[i] < arr[i + 1] :此时「右侧区域」⼀定会存在⼭峰(因为最右侧是负⽆穷),那么我们可以去右侧去寻找结果。
当我们找到「⼆段性」的时候,就可以尝试⽤「⼆分查找」算法来解决问题。
3、算法代码
class Solution {
public:
    int findPeakElement(vector<int>& nums) 
    {
        vector<int> ret;
        int left=0,right=nums.size()-1;
        while(right>left)
        {
            int mid=left+(right-left+1)/2;
            if(nums[mid]>nums[mid-1]) left=mid;
            else right=mid-1;

        }
        return left;
    }
};

4、6 寻找旋转排序数组中的最⼩值

153. 寻找旋转排序数组中的最小值 - 力扣(LeetCode)

1、题目描述

算法(3)——二分查找,算法,leetcode,c++

2、算法思路

题⽬中的数组规则如下图所示:

算法(3)——二分查找,算法,leetcode,c++

其中 C 点就是我们要求的点。
⼆分的本质:找到⼀个判断标准,使得查找区间能够⼀分为⼆。
通过图像我们可以发现, [A B] 区间内的点都是严格⼤于 D 点的值的, C 点的值是严格⼩于 D 点的值的。但是当 [C D] 区间只有⼀个元素的时候, C 点的值是可能等于 D 点的值的。
因此,初始化左右两个指针 left right :然后根据 mid 的落点,我们可以这样划分下⼀次查询的区间:
mid [A B] 区间的时候,也就是 mid 位置的值严格⼤于 D 点的值,下⼀次查询区间在 [mid + 1 right] 上;
mid [C D] 区间的时候,也就是 mid 位置的值严格⼩于等于 D 点的值,下次查询区间在 [left mid] 上。
当区间⻓度变成 1 的时候,就是我们要找的结果。
3、算法代码 
class Solution {
public:
    int findMin(vector<int>& nums) 
    {
        int tmp=nums[nums.size()-1];
        int left=0,right=nums.size()-1;
        while(right>left)
        {
            int mid=left+(right-left)/2;
            if(nums[mid]>tmp) left=mid+1;
            else right=mid;
        }
        return nums[left];
    }
};

4、7 0~n-1缺失的数字

LCR 173. 点名 - 力扣(LeetCode)

1、题目描述

算法(3)——二分查找,算法,leetcode,c++

2、算法思路

关于这道题中,时间复杂度为 O(N) 的解法有很多种,⽽且也是⽐较好想的,这⾥就不再赘述。
本题只讲解⼀个最优的⼆分法,来解决这个问题。
在这个升序的数组中,我们发现:
在第⼀个缺失位置的左边,数组内的元素都是与数组的下标相等的;
在第⼀个缺失位置的右边,数组内的元素与数组下标是不相等的。
因此,我们可以利⽤这个「⼆段性」,来使⽤「⼆分查找」算法。
3、算法代码
class Solution {
public:
    int takeAttendance(vector<int>& records) 
    {
        int left=0,right=records.size()-1,k=0;
        while(right>left)
        {
            int mid = left+(right-left)/2;
            if(records[mid]!=mid) right=mid;
            else left=mid+1;
        }
        return left==records[left]?left+1:left;
    }

到了这里,关于算法(3)——二分查找的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 每日一题(LeetCode)----二分查找(一)

    给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 示例 1: 示例 2: 示例 3: 提示: 1 = nums.length = 104 -104 = nums[i] = 104 nums 为 无重复元素 的 升序 排列数

    2024年02月08日
    浏览(50)
  • Leetcode 704.二分查找、27.移除元素

    暴力循环: 自己的思路 从左往右,遍历每个元素。 检查当前元素是否满足要求。 若满足要求则返回当前元素的下标。 时间复杂度:O(n); 空间复杂度:O(n); 二分查找: 题目给定的是一个升序的数组,即有序数组! 那么二分的前提是有序(或者具有某种特殊的性质!)。

    2024年02月17日
    浏览(50)
  • 二分查找两个模板,leetcode35.搜索插入位置

    在有序数列中,查找某个元素是否存在 扩展一下: 在有序数列中(通常是非递减,可以有重复元素),查找第一个满足xx条件的元素 每次搜索区间减半,时间复杂度 O ( l o g n ) O(logn) O ( l o g n ) 1.初始边界为0和n-1,如果你的下标从1开始,那就是1和n,效果一样, 只需要确保初始

    2024年02月20日
    浏览(40)
  • LeetCode-74. 搜索二维矩阵【数组 二分查找 矩阵】

    给你一个满足下述两条属性的 m x n 整数矩阵: 每行中的整数从左到右按非严格递增顺序排列。 每行的第一个整数大于前一行的最后一个整数。 给你一个整数 target ,如果 target 在矩阵中,返回 true ;否则,返回 false 。 示例 1: 输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]],

    2024年04月14日
    浏览(46)
  • 代码随想录 LeetCode数组篇 二分查找

    # (简单)704. 二分查找 题目链接 代码随想录 - 二分查找思路 二分查找,思路很简单,但是在while循环left和right的比较是写=还是,还有right=mid还是right=mid-1容易混淆 需要想清楚对区间的定义,是[left,right],还是[left,right) (版本一,左闭右闭版本) (版本二,左闭右开) 题目

    2024年02月02日
    浏览(56)
  • 【二分查找】【双指针】LeetCode:2565最少得分子序列

    【动态规划】【广度优先】LeetCode2258:逃离火灾 二分查找算法合集 有序向量的 二分查找 ,初始化完成后,向量不会修改。 双指针 : 用于计算子字符串是s的字符串的子系列。 给你两个字符串 s 和 t 。 你可以从字符串 t 中删除任意数目的字符。 如果没有从字符串 t 中删除字

    2024年02月05日
    浏览(57)
  • 【算法系列篇】二分查找——这还是你所知道的二分查找算法吗?

    在生活中,我们往往会遇到在数组中查找某个确定的元素的时候,通常我们会选择使用暴力解法,这样虽然简单,但是时间复杂度是O(N),时间效率比较低。那么是否有方法可以使得在具有二段性的数组中找某一特定的元素的时间复杂度低于0(N)呢?答案是肯定的,当我们可以

    2024年02月11日
    浏览(51)
  • Day1 LeetCode 704.二分查找 27.移除元素

    704.二分查找 题目链接: 力扣 文章讲解: 代码随想录 视频讲解: 手把手带你撕出正确的二分法 | 二分查找法 | 二分搜索法 | LeetCode:704. 二分查找_哔哩哔哩_bilibili 看完随想录之后的想法 两种情况1.左闭右闭  [ ]  2.左闭右开 [ )  当定义时为左闭右闭时,while中if的条件可以

    2024年02月15日
    浏览(40)
  • 代码随想录第一天 | LeetCode704.二分查找,LeetCode 27.移除元素

    数组理论基础要点: 数组也是数据结构的一种, 是存放在连续内存空间上的相同类型数据的集合。 数组注意点: 数组下标都是从0开始的。 数组内存空间的地址是连续的。 因为上述两点, 数组的在内存空间的地址是连续的,所以我们在删除或者增添元素的时候,就难免要

    2024年02月08日
    浏览(50)
  • 【算法系列 | 8】深入解析查找算法之—二分查找

    心若有阳光,你便会看见这个世界有那么多美好值得期待和向往。 决定开一个算法专栏,希望能帮助大家很好的了解算法。主要深入解析每个算法,从概念到示例。 我们一起努力,成为更好的自己! 今天第8讲,讲一下查找算法的二分查找 查找算法是很常见的一类问题,主

    2024年02月07日
    浏览(55)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包