数据挖掘:心脏病预测(测评指标;EDA)

这篇具有很好参考价值的文章主要介绍了数据挖掘:心脏病预测(测评指标;EDA)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

一、前期准备

二、实战演练

2.1分类指标评价计算示例

 2.2数据探索性分析(EDA)

2.2.1 导入函数工具箱

2.2.2 查看数据信息等相关数据

判断数据缺失和异常

数字特征相互之间的关系可视化

 类别特征分析(箱图,小提琴图,柱形图)

 2.2.3特征与标签构建

2.3模型训练与预测

2.3.1 利用xgb进行五折交叉验证查看模型的参数效果

2.3.2 定义xgb和lgb模型函数

2.3.3 切分数据集(Train,Val)进行模型训练,评价和预测

​编辑

2.3.4 进行两模型的结果加权融合


承接上一章:数据挖掘:汽车车交易价格预测(测评指标;EDA)_牛大了2023的博客-CSDN博客来一次实战演练。

一、前期准备

数据集是我以前发在资源里的心脏病数据集,大家可以手动划分一下训练集和测试集。

https://download.csdn.net/download/m0_62237233/87694444?spm=1001.2014.3001.5503

二、实战演练

2.1分类指标评价计算示例

import pandas as pd
import numpy as np
import os, PIL, random, pathlib
data_dir = './data/'
data_dir = pathlib.Path(data_dir)
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
import torch.nn.functional as F
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

print(device)
data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[1] for path in data_paths]
print(classeNames)

Train_data = pd.read_csv('data/trainC.csv', sep=',')
Test_data = pd.read_csv('data/testC.csv', sep=',')
print('Train data shape:',Train_data.shape) #包含了标签所以多一列
print('TestA data shape:',Test_data.shape)

eda指标,机器学习,数据挖掘,人工智能,机器学习

 打印相关指标

from sklearn.metrics import accuracy_score
y_pred = [0, 1, 0, 1]
y_true = [0, 1, 1, 1]
print('ACC:',accuracy_score(y_true, y_pred))
## Precision,Recall,F1-score
from sklearn import metrics
y_pred = [0, 1, 0, 0]
y_true = [0, 1, 0, 1]
print('Precision',metrics.precision_score(y_true, y_pred))
print('Recall',metrics.recall_score(y_true, y_pred))
print('F1-score:',metrics.f1_score(y_true, y_pred))
import numpy as np
from sklearn.metrics import roc_auc_score
y_true = np.array([0, 0, 1, 1])
y_scores = np.array([0.1, 0.4, 0.35, 0.8])
print('AUC socre:',roc_auc_score(y_true, y_scores))

回归指标评价计算也搞里头

# coding=utf-8
import numpy as np
from sklearn import metrics
 
# MAPE需要自己实现
def mape(y_true, y_pred):
    return np.mean(np.abs((y_pred - y_true) / y_true))
 
y_true = np.array([1.0, 5.0, 4.0, 3.0, 2.0, 5.0, -3.0])
y_pred = np.array([1.0, 4.5, 3.8, 3.2, 3.0, 4.8, -2.2])
 
# MSE
print('MSE:',metrics.mean_squared_error(y_true, y_pred))
# RMSE
print('RMSE:',np.sqrt(metrics.mean_squared_error(y_true, y_pred)))
# MAE
print('MAE:',metrics.mean_absolute_error(y_true, y_pred))
# MAPE
print('MAPE:',mape(y_true, y_pred))

eda指标,机器学习,数据挖掘,人工智能,机器学习

 2.2数据探索性分析(EDA)

2.2.1 导入函数工具箱

## 基础工具
import numpy as np
import pandas as pd
import warnings
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.special import jn
from IPython.display import display, clear_output
import time
 
warnings.filterwarnings('ignore')
 
 
## 模型预测的
from sklearn import linear_model
from sklearn import preprocessing
from sklearn.svm import SVR
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
 
## 数据降维处理的
from sklearn.decomposition import PCA, FastICA, FactorAnalysis, SparsePCA
 
import lightgbm as lgb
import xgboost as xgb
 
## 参数搜索和评价的
from sklearn.model_selection import GridSearchCV, cross_val_score, StratifiedKFold, train_test_split
from sklearn.metrics import mean_squared_error, mean_absolute_error
# coding:utf-8
# 导入warnings包,利用过滤器来实现忽略警告语句。
import warnings
 
warnings.filterwarnings('ignore')
 
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import missingno as msno

2.2.2 查看数据信息等相关数据

## 2) 简略观察数据(head()+shape)
print(Train_data.head().append(Train_data.tail()))

eda指标,机器学习,数据挖掘,人工智能,机器学习

 通过describe()来熟悉数据的相关统计量

describe种有每列的统计量,个数count、平均值mean、方差std、最小值min、中位数25% 50% 75% 、以及最大值 看这个信息主要是瞬间掌握数据的大概的范围以及每个值的异常值的判断

eda指标,机器学习,数据挖掘,人工智能,机器学习

 这个数据集没啥问题,但还是要做这些前置工作,要养成这个习惯。

判断数据缺失和异常

print(Train_data.isnull().sum())

eda指标,机器学习,数据挖掘,人工智能,机器学习

 没缺少的

了解预测值分布情况

对预测值分析+对预测值进行统计+对分布情况进行验证,以time变量为例

## 1) 总体分布概况(无界约翰逊分布等)
import scipy.stats as st
 
y = Train_data['time']
plt.figure(1);
plt.title('Johnson SU')
sns.distplot(y, kde=False, fit=st.johnsonsu)
plt.figure(2);
plt.title('Normal')
sns.distplot(y, kde=False, fit=st.norm)
plt.figure(3);
plt.title('Log Normal')
sns.distplot(y, kde=False, fit=st.lognorm)
plt.show()

eda指标,机器学习,数据挖掘,人工智能,机器学习eda指标,机器学习,数据挖掘,人工智能,机器学习

 eda指标,机器学习,数据挖掘,人工智能,机器学习

 还挺符合正态分布的。在进行回归之前,可以进行转换。虽然对数变换做得很好,但最佳拟合是无界约翰逊分布。

 查看频数

plt.hist(Train_data['time'], orientation = 'vertical',histtype = 'bar', color ='red')
plt.show()

eda指标,机器学习,数据挖掘,人工智能,机器学习

# log变换 z之后的分布较均匀,可以进行log变换进行预测,这也是预测问题常用的trick
plt.hist(np.log(Train_data['price']), orientation = 'vertical',histtype = 'bar', color ='red') 
plt.show()

eda指标,机器学习,数据挖掘,人工智能,机器学习

 将time进行log变换后趋近于正态分布,可以用来预测。

特征分为类别特征和数字特征,并对类别特征查看unique分布

# 分离label即预测值
Y_train = Train_data['time']

# 这个区别方式适用于没有直接label coding的数据
# 这里不适用,需要人为根据实际含义来区分
# 数字特征
# numeric_features = Train_data.select_dtypes(include=[np.number])
# numeric_features.columns
# # 类型特征
# categorical_features = Train_data.select_dtypes(include=[np.object])
# categorical_features.columns

#数字特征
numeric_features = ['age', 'creatinine_phosphokinase', 'ejection_fraction', 'platelets', 'serum_creatinine', 'serum_sodium', 'time']
#类型特征
categorical_features = ['anaemia', 'diabetes', 'high_blood_pressure', 'sex', 'smoking',  'DEATH_EVENT']

# 特征nunique分布
for cat_fea in categorical_features:
    print(cat_fea + "的特征分布如下:")
    print("{}特征有个{}不同的值".format(cat_fea, Train_data[cat_fea].nunique()))
    print(Train_data[cat_fea].value_counts())

eda指标,机器学习,数据挖掘,人工智能,机器学习

相关性分析:

## 1) 相关性分析

numeric_features.append('DEATH_EVENT')
price_numeric = Train_data[numeric_features]
correlation = price_numeric.corr()
print(correlation['DEATH_EVENT'].sort_values(ascending = False),'\n')

 eda指标,机器学习,数据挖掘,人工智能,机器学习

数字特征相互之间的关系可视化

## 4) 数字特征相互之间的关系可视化
sns.set()
columns = ['age', 'creatinine_phosphokinase', 'ejection_fraction', 'platelets', 'serum_creatinine', 'serum_sodium', 'time']
sns.pairplot(Train_data[columns],size = 2 ,kind ='scatter',diag_kind='kde')
plt.show()

eda指标,机器学习,数据挖掘,人工智能,机器学习

弄time和其他的看看

## 5) 多变量互相回归关系可视化
fig, ((ax1, ax2), (ax3, ax4), (ax5, ax6), (ax7, ax8), (ax9, ax10)) = plt.subplots(nrows=5, ncols=2, figsize=(24, 20))
# ['age', 'creatinine_phosphokinase' , 'ejection_fraction', 'platelets', 'serum_creatinine',  'time']
age_scatter_plot = pd.concat([Y_train, Train_data['age']], axis=1)
sns.regplot(x='age', y='time', data=age_scatter_plot, scatter=True, fit_reg=True, ax=ax1)

creatinine_phosphokinase_scatter_plot = pd.concat([Y_train, Train_data['creatinine_phosphokinase']], axis=1)
sns.regplot(x='creatinine_phosphokinase', y='time', data=creatinine_phosphokinase_scatter_plot, scatter=True,
            fit_reg=True, ax=ax2)

ejection_fraction_scatter_plot = pd.concat([Y_train, Train_data['ejection_fraction']], axis=1)
sns.regplot(x='ejection_fraction', y='time', data=ejection_fraction_scatter_plot, scatter=True, fit_reg=True, ax=ax3)

platelets_scatter_plot = pd.concat([Y_train, Train_data['platelets']], axis=1)
sns.regplot(x='platelets', y='time', data=platelets_scatter_plot, scatter=True, fit_reg=True, ax=ax4)

serum_creatinine_scatter_plot = pd.concat([Y_train, Train_data['serum_creatinine']], axis=1)
sns.regplot(x='serum_creatinine', y='time', data=serum_creatinine_scatter_plot, scatter=True, fit_reg=True, ax=ax5)

# time_scatter_plot = pd.concat([Y_train, Train_data['time']], axis=1)
# sns.regplot(x='time', y='time', data=time_scatter_plot, scatter=True, fit_reg=True, ax=ax6)

plt.show()

eda指标,机器学习,数据挖掘,人工智能,机器学习

 类别特征分析(箱图,小提琴图,柱形图)

# 因为 name和 regionCode的类别太稀疏了,这里我们把不稀疏的几类画一下
categorical_features = ['anaemia',
                        'diabetes',
                        'high_blood_pressure',
                        'sex',
                        'smoking']
for c in categorical_features:
    Train_data[c] = Train_data[c].astype('category')
    if Train_data[c].isnull().any():
        Train_data[c] = Train_data[c].cat.add_categories(['MISSING'])
        Train_data[c] = Train_data[c].fillna('MISSING')


def boxplot(x, y, **kwargs):
    sns.boxplot(x=x, y=y)
    x = plt.xticks(rotation=90)


f = pd.melt(Train_data, id_vars=['DEATH_EVENT'], value_vars=categorical_features)  # 预测值
g = sns.FacetGrid(f, col="variable", col_wrap=2, sharex=False, sharey=False, height=5)
g = g.map(boxplot, "value", "DEATH_EVENT")
plt.show()

因为都是0-1数据,所以好像没法直观看…不再演示其他类型图了

eda指标,机器学习,数据挖掘,人工智能,机器学习

 类别特征的每个类别频数可视化(count_plot)

##  5) 类别特征的每个类别频数可视化(count_plot)
def count_plot(x,  **kwargs):
    sns.countplot(x=x)
    x=plt.xticks(rotation=90)
 
f = pd.melt(Train_data,  value_vars=categorical_features)
g = sns.FacetGrid(f, col="variable",  col_wrap=2, sharex=False, sharey=False, height=5)
g = g.map(count_plot, "value")
plt.show()

eda指标,机器学习,数据挖掘,人工智能,机器学习

 2.2.3特征与标签构建

  • 提取数值类型特征列名
numerical_cols = Train_data.select_dtypes(exclude='object').columns
print(numerical_cols)
 
 
categorical_cols = Train_data.select_dtypes(include='object').columns
print(categorical_cols)

eda指标,机器学习,数据挖掘,人工智能,机器学习

  • 构建训练和测试样本
## 提前特征列,标签列构造训练样本和测试样本
X_data = Train_data[feature_cols]
Y_data = Train_data['time']

X_test = Test_data[feature_cols]

print('X train shape:', X_data.shape)
print('X test shape:', X_test.shape)

X train shape: (209, 13)
X test shape: (90, 13)

  • 统计标签的基本分布信息
## 定义了一个统计函数,方便后续信息统计
def Sta_inf(data):
    print('_min', np.min(data))
    print('_max:', np.max(data))
    print('_mean', np.mean(data))
    print('_ptp', np.ptp(data))
    print('_std', np.std(data))
    print('_var', np.var(data))


print('Sta of label:')
Sta_inf(Y_data)
## 绘制标签的统计图,查看标签分布
plt.hist(Y_data)
plt.show()

eda指标,机器学习,数据挖掘,人工智能,机器学习

eda指标,机器学习,数据挖掘,人工智能,机器学习

2.3模型训练与预测

2.3.1 利用xgb进行五折交叉验证查看模型的参数效果

## xgb-Model
xgr = xgb.XGBRegressor(n_estimators=120, learning_rate=0.1, gamma=0, subsample=0.8,\
        colsample_bytree=0.9, max_depth=7) #,objective ='reg:squarederror'
#簇120,学习率0.1 ,深度为7
scores_train = []
scores = []
 
## 5折交叉验证方式,防止过拟合
sk=StratifiedKFold(n_splits=5,shuffle=True,random_state=0)
for train_ind,val_ind in sk.split(X_data,Y_data):
    
    train_x=X_data.iloc[train_ind].values
    train_y=Y_data.iloc[train_ind]
    val_x=X_data.iloc[val_ind].values
    val_y=Y_data.iloc[val_ind]
    
    xgr.fit(train_x,train_y)
    pred_train_xgb=xgr.predict(train_x)
    pred_xgb=xgr.predict(val_x)
    
    score_train = mean_absolute_error(train_y,pred_train_xgb)
    scores_train.append(score_train)
    score = mean_absolute_error(val_y,pred_xgb)
    scores.append(score)
 
print('Train mae:',np.mean(score_train))
print('Val mae',np.mean(scores))

Train mae: 0.04781590756915864
Val mae 1.206481080991189

2.3.2 定义xgb和lgb模型函数

def build_model_xgb(x_train,y_train):
    model = xgb.XGBRegressor(n_estimators=150, learning_rate=0.1, gamma=0, subsample=0.8,\
        colsample_bytree=0.9, max_depth=7) #, objective ='reg:squarederror'
    model.fit(x_train, y_train)
    return model
 
def build_model_lgb(x_train,y_train):
    estimator = lgb.LGBMRegressor(num_leaves=127,n_estimators = 150)
    param_grid = {
        'learning_rate': [0.01, 0.05, 0.1, 0.2],
    }
    gbm = GridSearchCV(estimator, param_grid)  #网格搜索
    gbm.fit(x_train, y_train)
    return gbm

网格搜索自动调参方式,对param_grid中参数进行改正,可以添加学习率等等参数

 param_grid = {
        'learning_rate': [0.01, 0.05, 0.1, 0.2],
        'n_estimators': [100, 140, 120, 130],
         
    }

2.3.3 切分数据集(Train,Val)进行模型训练,评价和预测

## Split data with val
x_train,x_val,y_train,y_val = train_test_split(X_data,Y_data,test_size=0.3)

 按比例切分,也可以4:1 即test_size=0.2

 print('Train lgb...')
model_lgb = build_model_lgb(x_train,y_train)
val_lgb = model_lgb.predict(x_val)
MAE_lgb = mean_absolute_error(y_val,val_lgb)
print('MAE of val with lgb:',MAE_lgb)
 
print('Predict lgb...')
model_lgb_pre = build_model_lgb(X_data,Y_data)
subA_lgb = model_lgb_pre.predict(X_test)
print('Sta of Predict lgb:')
Sta_inf(subA_lgb)

eda指标,机器学习,数据挖掘,人工智能,机器学习

print('Train xgb...')
model_xgb = build_model_xgb(x_train,y_train)
val_xgb = model_xgb.predict(x_val)
MAE_xgb = mean_absolute_error(y_val,val_xgb)
print('MAE of val with xgb:',MAE_xgb)
 
print('Predict xgb...')
model_xgb_pre = build_model_xgb(X_data,Y_data)
subA_xgb = model_xgb_pre.predict(X_test)
print('Sta of Predict xgb:')
Sta_inf(subA_xgb)

eda指标,机器学习,数据挖掘,人工智能,机器学习

2.3.4 进行两模型的结果加权融合

## 这里我们采取了简单的加权融合的方式
val_Weighted = (1-MAE_lgb/(MAE_xgb+MAE_lgb))*val_lgb+(1-MAE_xgb/(MAE_xgb+MAE_lgb))*val_xgb
val_Weighted[val_Weighted<0]=10 # 由于我们发现预测的最小值有负数,而真实情况下,price为负是不存在的,由此我们进行对应的后修正
print('MAE of val with Weighted ensemble:',mean_absolute_error(y_val,val_Weighted))

MAE of val with Weighted ensemble: 3.1147994422143657文章来源地址https://www.toymoban.com/news/detail-770017.html

到了这里,关于数据挖掘:心脏病预测(测评指标;EDA)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • python 心脏病可视化和分类预测

    背景:心脏病是人类健康的头号杀手,全世界1/3的人口死亡是心脏病引起的。而我国,每年有几十万人死于心脏病。如果可以通过提取人体相关的体测指标,通过数据挖掘方式来分析不同特征对于心脏病的影响,将对预防心脏病起到至关重要的作用。 意义:此数据集可以用于

    2024年02月06日
    浏览(41)
  • R语言关于心脏病相关问题的预测和分析

    背景 心脏病由心脏结构受损或功能异常引起包括先天性心脏病和后天性心脏病,不同类型的心脏病表现不同,轻重不一。 本报告是基于R语言对心脏研究的机器学习/数据科学调查分析。更具体地说,我们的目标是在心脏研究的数据集上建立一些预测模型,建立探索性和建模方

    2024年02月09日
    浏览(48)
  • 基于python的心脏病个人指数数据集数据处理——结课论文

    前言: 此论文是小赵的python数据分析与应用的结课作业 , 未上传论文涉及的所有数据集,本论文所涉及的数据预处理,数据分析和可视化仅以这些数据集为准,所有处理方法,结果以及结论仅个人观点。 心脏病个人指数数据集数据处理 摘要:     本论文包含了对心脏病个

    2024年02月04日
    浏览(44)
  • Python数据分析—基于机器学习的UCI心脏病数据分析(源码+数据+分析设计)

    下载链接:https://pan.baidu.com/s/1ys2F6ZH4EgnFdVP2mkTcsA?pwd=LCFZ 提取码:LCFZ 心脏病是一类比较常见的循环系统疾病。循环系统由心脏、血管和调节血液循环的神经体液组织构成,循环系统疾病也称为心血管病,包括上述所有组织器官的疾病,在内科疾病中属于常见病,其中以心脏病

    2024年02月07日
    浏览(57)
  • 【统计模型】心脏病患病影响因素探究

    目录 心脏病患病影响因素探究 一、研究目的 二、数据来源和相关说明 三、描述性统计分析 四、数据建模 4.1 全模型 (1)模型构建 (2)模型预测 4.2 基于AIC准则的选模型A 4.3 基于BIC准则的选模型B 4.4 模型评估 五、结论及建议 5.1 结论 5.2 建议 六、代码         内容提要

    2024年02月03日
    浏览(121)
  • 数据挖掘:汽车车交易价格预测(测评指标;EDA)

    目录 一、前期工作 1.赛题介绍  赛题分析: 分类和回归问题的评价指标有如下一些形式: (下文2.1和2.2会用到) 2.数据简介 3.探索性分析-EDA介绍 二、实战演练 2.1分类指标评价计算示例  2.2回归指标评价计算示例 2.3数据探索性分析(EDA) 2.3.1 导入函数工具箱 2.3.2 数据信息

    2024年02月04日
    浏览(38)
  • 【数据挖掘竞赛】零基础入门数据挖掘-二手汽车价格预测

    目录 一、导入数据  二、数据查看 可视化缺失值占比  绘制所有变量的柱形图,查看数据 查看各特征与目标变量price的相关性 三、数据处理  处理异常值 查看seller,offerType的取值 查看特征 notRepairedDamage   异常值截断  填充缺失值   删除取值无变化的特征 查看目标变量p

    2023年04月27日
    浏览(61)
  • 数据挖掘(4.1)--分类和预测

    目录 前言 一、分类和预测 分类 预测 二、关于分类和预测的问题 准备分类和预测的数据 评价分类和预测方法 混淆矩阵 评估准确率 参考资料 分类:离散型、分类新数据 预测:连续型、预测未知值 描述属性:连续、离散 类别属性:离散 有监督学习: 分类 训练样本有标签

    2023年04月21日
    浏览(44)
  • HNU-数据挖掘-实验4-链接预测

    计科210X 甘晴void 202108010XXX 节点分类(Node Classification)是图/图谱数据上常被采用的一个学习任务,既是用模型预测图中每个节点的类别。链接预测(Link Prediction)一般指的是,对存在多对象的总体中,每个对象之间的相互作用和相互依赖关系的推断过程。 利用已经掌握的深

    2024年01月22日
    浏览(54)
  • 【数据挖掘】数据挖掘、关联分析、分类预测、决策树、聚类、类神经网络与罗吉斯回归

      数据挖掘是20世纪末兴起的数据智能分析技术,由于有广阔的应用前景而备受重视   广大从事 数据库应用与决策支持 ,以及 数据分析 等学科的科研工作者和工程技术人员迫切需要了解和掌握。 数据挖掘涉及的内容较为广泛,已成为信息社会中广泛应用的一门综合性

    2024年02月08日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包