1. 协方差矩阵定义
在统计学中,方差是用来度量单个随机变量的离散程度,而协方差则一般用来刻画两个随机变量的相似程度。
参考: 带你了解什么是Covariance Matrix协方差矩阵 - 知乎
2. 协方差矩阵计算过程
- 将输入数据A进行中心化处理得到A'。即通过减去每个维度的平均值来实现中心化。
- 注意:平均值的计算有两种方式,按行计算(如numpy)和按列计算(如matlab),两者结果是不一样的,但原理是一样的,本文采用按行计算平均值为例。
- 按列计算均值(每一行是一个observation(样本),那么每一列就是一个随机变量(特征))的一个实例:协方差矩阵计算方法_如何算瞬时协方差矩阵-CSDN博客
-
对于按行计算方式:协方差矩阵等于去中心化后的数据A'乘以A'的转置矩阵, 然后除以 (列数-1)。如果输入数据的维度为(N,M),则该乘积的形状为(N,M)和(M,N),得到一个形状为(N,N)的矩阵。即对于NxM的矩阵A, 去中心化后的矩阵为A', 则协方差等于:
3. 示例
一个矩阵A的协方差矩阵计算
设2x4的矩阵A为:
按行计算均值,意味着每一列是一个observation(样本),那么每一行就是一个随机变量(特征),举例如对于随机变量X,Y, 有四组采样结果(1,2), (2,3), (4,2), (1,5), 写成矩阵相乘的形式为:
则均值向量为
去中心化后的矩阵A'为:
则协方差矩阵cov(A)为:
所以,
代码numpy验算
import numpy as np
A = np.array([[1, 2, 4, 1], [2, 3, 2, 5]])
print("======= cov(A) =======")
print(np.cov(A))
mean_A = np.mean(A,axis=1,keepdims=True)
print("======= mean_A =======")
print(mean_A)
A1 = A - mean_A
print("======= A - mean_A =======")
print(A1)
covA =np.matmul(A1, A1.T)/(A1.shape[1]-1)
print("======= covA =======")
print(covA)
输出结果:
两个矩阵A、B的协方差矩阵计算
设矩阵A (维度NxM), B (维度NxM),去中心化后的矩阵为A', B', 则两个矩阵的协方差矩阵cov(A,B)为:
设A,B (维度为2x4)值分别为:
,
则 按行求平均值, 得平均值向量为, , 去中心化后,得到:
,
则其协方差矩阵 cov(A,B)(维度为4x4)为
性质:
代码numpy验算
A = np.array([[1, 2, 4, 1], [2, 3, 2, 5]])
B = np.array([[5, 3, 4, 4], [2, 2, 8, 8]])
B1 = B - np.mean(B,axis=1,keepdims=True)
A1 = A - np.mean(A,axis=1,keepdims=True)
C11 = np.cov(A)
C22 = np.cov(B)
C12 = np.matmul(A1, B1.T)/(B1.shape[1]-1)
C21 = np.matmul(B1, A1.T)/(A1.shape[1]-1)
C = np.vstack((np.hstack((C11,C12)),np.hstack((C21,C22))))
print("======= np.cov(A,B) =======")
print(np.cov(A,B))
print("======= C =======")
print(C)
结果:
参考:
协方差矩阵计算实例_协方差矩阵例子-CSDN博客
协方差的计算方法_协方差计算-CSDN博客 (matlab计算)
带你了解什么是Covariance Matrix协方差矩阵文章来源:https://www.toymoban.com/news/detail-770053.html
https://wenku.csdn.net/answer/2408abac75f64f0186adff81be057f99文章来源地址https://www.toymoban.com/news/detail-770053.html
到了这里,关于矩阵运算_矩阵的协方差矩阵/两个矩阵的协方差矩阵_求解详细步骤示例的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!