数据结构-----二叉排序树

这篇具有很好参考价值的文章主要介绍了数据结构-----二叉排序树。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

前言

1.什么是二叉排序树

2.如何构建二叉排序树

3.二叉排序树的操作

3.1定义节点储存方式

3.2插入节点操作

3.2创建二叉排序树

3.4遍历输出(中序遍历)

3.5数据查找操作

3.6获取最大值和最小值

3.7删除节点操作

3.8销毁二叉排序树

4.完整代码


前言

        今天我们继续学习新的知识点----排序二叉树,在此之前我们学习了相关的排序算法,给你一个数组,然后对这个数组进行排序。那么同样的我们也可以去构建一个二叉排序树,在创建树的过程中进行排序,也能实现排序的效果,下面就一起来看看吧!

1.什么是二叉排序树

        二叉排序树(Binary Sort Tree),又称二叉查找树(Binary Search Tree),亦称二叉搜索树。是数据结构中的一类。在一般情况下,查询效率比链表结构要高。 

给定一个二叉树,如果满足以下条件,那就是二叉排序树

  • 若它的左子树不空,则左子树上所有结点的值均小于它根结点的值。
  • 若它的右子树不空,则右子树上所有结点的值均大于它根结点的值。
  • 它的左、右子树都满足为⼆叉排序树

二叉排序树最大的好处就是查找效率高,相较于链表一个一个去查找,二叉排序树可以去根据数据的排序规律来进行查找

二叉排序树图示:二叉排序树,数据结构与算法,数据结构,二叉树,c语言,树,链表

2.如何构建二叉排序树

比如给定一个数组 [62,88,58,47,35,73,51,99,37,93] ,首先拿到第一个数字,以这个数字为根结点(标准),进行构建,如果比这个数字要大的就放到右子树,比这个要小的就放到左子树去,如下图所示:

二叉排序树,数据结构与算法,数据结构,二叉树,c语言,树,链表

 这里我们可以看出,这些节点是一个一个去进行插入的,那我们就可以去通过递归插入的方式来创建,依次往下遍历,找到合适的位置再进行插入操作。

3.二叉排序树的操作

3.1定义节点储存方式

#include<stdio.h>
#include<stdlib.h>

//二叉排序树节点存储方式
typedef int DataType;
typedef struct binarytreenode {
	DataType data;	//数据域
	struct binarytreenode* left;	//左指针 
	struct binarytreenode* right;	//右指针
}BTnode;

3.2插入节点操作

插入一个节点首先就要找到这个节点应该插入的位置,从跟节点开始,如果比跟节点小就往左,大就往右,直到叶子节点的位置进行插入操作。

二叉排序树,数据结构与算法,数据结构,二叉树,c语言,树,链表

代码实现: 

//插入数据
void Insert_node(BTnode** root, DataType data) {
	if (*root == NULL) {
		*root = (BTnode*)malloc(sizeof(BTnode));
		if (!*root) {
			printf("ERROR\n");
			exit(-1);
		}
		(*root)->data = data;
		(*root)->left = NULL;
		(*root)->right = NULL;
	}

	else if ((*root)->data <= data)
		Insert_node(&(*root)->right, data);
	else if ((*root)->data > data)
		Insert_node(&(*root)->left, data);
}

3.2创建二叉排序树

创建二叉排序树,只需要一一插入节点,最后返回根节点即可。代码如下:

//创建排序二叉树
BTnode* Create_sortBtree(DataType* arr, int size) {
	if (!arr)
		return NULL;
	else {
		BTnode* T = NULL;
		for (int i = 0; i < size; i++) {
			Insert_node(&T, arr[i]);
		}
		return T;
	}
}

3.4遍历输出(中序遍历)

//中序遍历排序二叉树
void mid_travel(BTnode* T)
{
	if (!T)
		return;
	mid_travel(T->left);
	printf("%d ", T->data);
	mid_travel(T->right);
}

3.5数据查找操作

在二叉排序树上查找某一个值节点,然后返回这个节点的操作。这里可以通过递归和非递归两种方法去实现,代码如下:

递归实现: 

BTnode* Btree_search(BTnode* root, DataType target) {
	if (!root)
		return NULL;
	if (target == root->data) {
		return root;
	}
	return target > root->data ? Btree_search(root->right, target) : Btree_search(root->left, target);
}

 非递归实现(迭代实现):

//非递归查找
BTnode* Btree_search_fa(BTnode* T, DataType target) {
	BTnode* p = T;
	while (p) {
		if (p->data == target)
		{
			return p;
		}
		p = target > p->data ? p->right : p->left;
	}
	return NULL;
}

3.6获取最大值和最小值

在一个排序二叉树里面获取最大值或者是最小值,说白了也就是找到最右边和最左边节点就行了,二叉排序树的两个最值就在最两边。代码如下:

获取最大值

//获取最大值
int Btree_max(BTnode* T) {
	BTnode* cur = T;
	while (cur->right) {
		cur = cur->right;
	}
	return cur->data;
}

 获取最小值

//获取最小值
int Btree_min(BTnode* T) {
	BTnode* cur = T;
	while (cur->left) {
		cur = cur->left;
	}
	return cur->data;
}

3.7删除节点操作

删除节点操作,这就有可能会破坏到排序二叉树的结构,所以要分几种情况去处理。一、如果删除的是叶子节点的话,那么就可以直接去删除,因为叶子节点左右节点都为空,不会影响到二叉排序树的结构;二、如果要删除的节点只有一个左子树或者是有一个右子树的话,我们只需要找到这个节点的左节点或者是右节点,然后顶替掉这个要删除的节点即可;三、如果要删除的节点都有左右子树的话,这里我们就需要去遍历找到比这个节点大一位或者是小一位的节点来顶替这个节点。如下图所示:

1.删除叶子节点 

二叉排序树,数据结构与算法,数据结构,二叉树,c语言,树,链表

 2.删除只有一个左(右)子树的节点二叉排序树,数据结构与算法,数据结构,二叉树,c语言,树,链表

3.删除有左右子树的节点 

二叉排序树,数据结构与算法,数据结构,二叉树,c语言,树,链表

二叉排序树,数据结构与算法,数据结构,二叉树,c语言,树,链表

代码实现:

//删除节点
void Btree_del(BTnode* T, DataType l) {
	if (!T) {
		printf("fuck no\n");
		return;
	}
	//找到这个要删除节点的父节点
	BTnode* p = T, * f = NULL;
	while (p) {
		if (p->data == l)
		{
			break;
		}
		f = p;
		p = l > p->data ? p->right : p->left;
	}
	if (!p)
	{
		printf("没有这个节点\n");
		return;
	}
	BTnode* target = p;//此时的要删除目标节点
	BTnode* par = f; //此时要删除节点的父节点

	//第一种情况 此节点只有一个子树的时候
	if (!target->left && target->right != NULL)
	{
		if (target->data > par->data) {
			par->right = target->right;
		}
		else {
			par->left = target->right;
		}
		free(target);//释放空间
		target = NULL;
	}
	else if (target->left != NULL && !target->right) {
		if (target->data > par->data) {
			par->right = target->left;
		}
		else {
			par->left = target->left;
		}
		free(target);
		target = NULL;
	}
	//第二种情况,如果删除的是叶节点,直接删除即可
	else if (!target->left && !target->right) {
		if (target->data > par->data) {
			par->right = NULL;
		}
		else {
			par->left = NULL;
		}
		free(target);
		target = NULL;
	}
	//第三种情况,如果左右子树都存在的话
	//可以用右子树的最小元素
	//或者左子树的最大元素来替代被删除的节点
	//我这里就直接去用左树的最大代替这个节点
	else
	{
		BTnode* Lchild = target->left;
		while (Lchild->right != NULL) {
			Lchild = Lchild->right;
		}
		if (target->data > par->data) {
			par->right = Lchild;
		}
		else {
			par->left = Lchild;
		}
		free(target);
		target = NULL;
	}
	printf("Deleting successfully\n");
}

3.8销毁二叉排序树

//销毁
void Destory_btree(BTnode* T) {
	if (!T)
		return;
	BTnode* cur = T;
	if (cur->left)
		Destory_btree(cur->left);
	if (cur->right)
		Destory_btree(cur->right);
	free(T);
}

4.完整代码

#include<stdio.h>
#include<stdlib.h>

//二叉排序树节点存储方式
typedef int DataType;
typedef struct binarytreenode {
	DataType data;	//数据域
	struct binarytreenode* left;	//左指针 
	struct binarytreenode* right;	//右指针
}BTnode;


//插入数据
void Insert_node(BTnode** root, DataType data) {
	if (*root == NULL) {
		*root = (BTnode*)malloc(sizeof(BTnode));
		if (!*root) {
			printf("ERROR\n");
			exit(-1);
		}
		(*root)->data = data;
		(*root)->left = NULL;
		(*root)->right = NULL;
	}

	else if ((*root)->data <= data)
		Insert_node(&(*root)->right, data);
	else if ((*root)->data > data)
		Insert_node(&(*root)->left, data);
}


//创建排序二叉树
BTnode* Create_sortBtree(DataType* arr, int size) {
	if (!arr)
		return NULL;
	else {
		BTnode* T = NULL;
		for (int i = 0; i < size; i++) {
			Insert_node(&T, arr[i]);
		}
		return T;
	}
}

//中序遍历排序二叉树
void mid_travel(BTnode* T)
{
	if (!T)
		return;
	mid_travel(T->left);
	printf("%d ", T->data);
	mid_travel(T->right);
}

//递归查找数据
BTnode* Btree_search(BTnode* root, DataType target) {
	if (!root)
		return NULL;
	if (target == root->data) {
		return root;
	}
	return target > root->data ? Btree_search(root->right, target) : Btree_search(root->left, target);
}
//非递归查找
BTnode* Btree_search_fa(BTnode* T, DataType target) {
	BTnode* p = T, * f = NULL;
	while (p) {
		if (p->data == target)
		{
			return f;
		}
		f = p;
		p = target > p->data ? p->right : p->left;
	}
	return NULL;
}

//获取最大值
int Btree_max(BTnode* T) {
	BTnode* cur = T;
	while (cur->right) {
		cur = cur->right;
	}
	return cur->data;
}
//获取最小值
int Btree_min(BTnode* T) {
	BTnode* cur = T;
	while (cur->left) {
		cur = cur->left;
	}
	return cur->data;
}


//删除节点
void Btree_del(BTnode* T, DataType l) {
	if (!T) {
		printf("fuck no\n");
		return;
	}
	//找到这个要删除节点的父节点
	BTnode* p = T, * f = NULL;
	while (p) {
		if (p->data == l)
		{
			break;
		}
		f = p;
		p = l > p->data ? p->right : p->left;
	}
	if (!p)
	{
		printf("没有这个节点\n");
		return;
	}
	BTnode* target = p;//此时的要删除目标节点
	BTnode* par = f; //此时要删除节点的父节点

	//第一种情况 此节点只有一个子树的时候
	if (!target->left && target->right != NULL)
	{
		if (target->data > par->data) {
			par->right = target->right;
		}
		else {
			par->left = target->right;
		}
		free(target);//释放空间
		target = NULL;
	}
	else if (target->left != NULL && !target->right) {
		if (target->data > par->data) {
			par->right = target->left;
		}
		else {
			par->left = target->left;
		}
		free(target);
		target = NULL;
	}
	//第二种情况,如果删除的是叶节点,直接删除即可
	else if (!target->left && !target->right) {
		if (target->data > par->data) {
			par->right = NULL;
		}
		else {
			par->left = NULL;
		}
		free(target);
		target = NULL;
	}
	//第三种情况,如果左右子树都存在的话
	//可以用右子树的最小元素
	//或者左子树的最大元素来替代被删除的节点
	//我这里就直接去用左树的最大代替这个节点
	else
	{
		BTnode* Lchild = target->left;
		while (Lchild->right != NULL) {
			Lchild = Lchild->right;
		}
		if (target->data > par->data) {
			par->right = Lchild;
		}
		else {
			par->left = Lchild;
		}
		free(target);
		target = NULL;
	}
	printf("Deleting successfully\n");
}

//销毁
void Destory_btree(BTnode* T) {
	if (!T)
		return;
	BTnode* cur = T;
	if (cur->left)
		Destory_btree(cur->left);
	if (cur->right)
		Destory_btree(cur->right);
	free(T);
}

int main()
{
	int a[] = { 53,17,78,9,45,65,87,23 };
	//创建二叉排序树
	BTnode* T = Create_sortBtree(a, sizeof(a) / sizeof(int));
	mid_travel(T);//遍历输出
	puts("");
	//删除最大最小值
	printf("max:%d  min:%d\n", Btree_max(T), Btree_min(T));
	//查找
	BTnode* find = Btree_search(T, 23);
	printf("查找结果%d\n", find->data);

	//删除节点
	Btree_del(T, 45);
	mid_travel(T);
	puts("");
	//销毁操作
	Destory_btree(T);
}
//输出结果:
//9 17 23 45 53 65 78 87
//max:87  min : 9
//查找结果23
//Deleting successfully
//9 17 23 53 65 78 87


以上就是二叉排序树的全部内容了,我们下次见咯!祝各位国庆节快乐!

 分享一张壁纸:二叉排序树,数据结构与算法,数据结构,二叉树,c语言,树,链表文章来源地址https://www.toymoban.com/news/detail-770067.html

到了这里,关于数据结构-----二叉排序树的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【数据结构】二叉排序树——平衡二叉树的调整

    参考视频: 懒猫老师-数据结构-(59)平衡二叉树【互动视频】 (1)什么是平衡二叉树 平衡二叉树(Balanced Binary Tree)是一种特殊的二叉查找树,它的目的是保持树的高度尽量平衡,以保证查找、插入、删除等操作的时间复杂度为 O(log n)。 常见的平衡二叉树算法包括 AVL 树、红

    2024年02月04日
    浏览(40)
  • 【数据结构】:二叉树与堆排序的实现

    树是一种非线性的数据结构,它是由n(n=0)个有限结点组成一个具有层次关系的集合把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的有一个特殊的结点,称为根结点,根节点没有前驱结点 除根节点外,其余结点被分成M(M0)个互不相交的集合T1、

    2024年02月08日
    浏览(41)
  • 数据结构(C语言实现)——二叉树的概念及二叉树顺序结构和链式结构的实现(堆排序+TOP-K问题+链式二叉树相关操作)

    前面学习了数据结构中线性结构的几种结构,顺序表,链表,栈和队列等,今天我们来学习一种非线性的数据结构——树。由于二叉树是数据结构中的一个重点和难点,所以本文着重介绍二叉树的相关概念和性质,以及二叉树的应用。 树是一种非线性的数据结构,它是由n(

    2023年04月21日
    浏览(45)
  • 【数据结构】详解二叉树与堆与堆排序的关系

    🌇个人主页:平凡的小苏 📚学习格言:别人可以拷贝我的模式,但不能拷贝我不断往前的激情 🛸C语言专栏:https://blog.csdn.net/vhhhbb/category_12174730.html 🚀数据结构专栏:https://blog.csdn.net/vhhhbb/category_12211053.html         家人们更新不易,你们的👍点赞👍和⭐关注⭐真的对我

    2024年02月02日
    浏览(42)
  • 【数据结构和算法】--- 二叉树(3)--二叉树链式结构的实现(1)

    在学习二叉树的基本操作前,需先要创建一棵二叉树,然后才能学习其相关的基本操作。由于现在大家对二叉树结构掌握还不够深入,且为了方便后面的介绍,此处手动快速创建一棵简单的二叉树,快速进入二叉树操作学习,等二叉树结构了解的差不多时,我们反过头再来研

    2024年01月25日
    浏览(63)
  • 数据结构课设(五)二叉排序树与平衡二叉树的实现

    假定二叉排序树与平题所处理数据均为整型。分别采用二叉链表和顺序表作存储结构,实现对二叉衡二叉树的操作。具体要求如下: (1)用二叉链表作存储结构: ①读入一个整数序列L(要求该整数序列从磁盘文件读取),生成一棵二叉排序树②对二叉排序树T作中序遍历,输出结果

    2024年02月12日
    浏览(46)
  • 数据结构----完全二叉树的时间复杂度讲解,堆排序

    目录 一.建堆的时间复杂度 1.向上调整算法建堆 2.向下调整算法建堆 二.堆排序 1.概念 2.代码思路 3.代码实现 我们就以极端情况考虑时间复杂度(满二叉树+遍历所有层) 假设所有节点个数为N,树的高度为h N = 2^0+2^1+2^2......+2^(h-1) 即N = 2^h - 1 h = log(N+1) 时间复杂度我们以交换次数为

    2024年03月14日
    浏览(65)
  • 数据结构与算法-二叉树

            在计算机科学中,数据结构是组织和存储数据的基础框架,而算法则是处理这些数据的核心逻辑。在这众多的数据结构中,二叉树因其独特的层级结构、高效的搜索和插入操作,成为广泛应用的一种非线性数据结构。本文将深入探讨二叉树的定义、种类、操作方法

    2024年03月10日
    浏览(59)
  • 【数据结构与算法】—— 二叉树

    目录 一、树 1、初识树 2、树的一些概念 3、树的表示形式 二、二叉树 1、初识二叉树 2、两种特殊的二叉树 3、二叉树的性质  4、二叉树的遍历 5、实现一棵二叉树  6、二叉树题目(没代码的后面会给补上) (1)根节点没有前驱。 (2)子树的根节点只有一个前驱,可以有

    2024年04月09日
    浏览(48)
  • 【数据结构】二叉树-堆(top-k问题,堆排序,时间复杂度)

     🌈个人主页: 秦jh__https://blog.csdn.net/qinjh_?spm=1010.2135.3001.5343 🔥 系列专栏: 《数据结构》https://blog.csdn.net/qinjh_/category_12536791.html?spm=1001.2014.3001.5482 ​​ 目录 堆排序 第一种  ​编辑 第二种  TOP-K问题 建堆的时间复杂度 向下调整建堆的时间复杂度:  向上调整建堆的时间

    2024年01月21日
    浏览(61)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包