k近邻算法原理

这篇具有很好参考价值的文章主要介绍了k近邻算法原理。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

k近邻算法主要思想

k近邻算法是一种基本的分类与回归方法,其主要思想是基于样本之间的距离进行分类或回归预测。即对未标记样本的类别,由距离其最近的k个邻居投票来决定属于哪个类别。具体而言,k近邻算法将新的样本点与训练数据集中的样本进行距离度量,并选择与该样本距离最近的k个训练样本作为参考。对于分类问题,k近邻算法通过统计这k个样本中各类别的数量来决定新样本所属的类别;对于回归问题,k近邻算法通过计算这k个样本的平均值或加权平均值来预测新样本的输出值。k近邻算法没有显式的训练过程,而是在预测时根据训练数据来进行实时计算。

kNN的原理

kNN的原理是:通过计算待标记样本和数据集中每个样本的距离,取距离最近的k个样本。待标记的样本所属类别就由这k个距离最近的样本投票产生。

k近邻算法(k-nearest neighbors,简称kNN)是一种基本的分类与回归方法。其原理可以概括为以下几个步骤:

  1. 训练阶段:将带有标签的训练样本集合作为输入。kNN算法不进行显式的训练过程,而是将这些样本保存起来以供后续的预测使用。

  2. 预测阶段:对于一个新的待预测样本,计算它与训练数据集中每个样本之间的距离。常用的距离度量方法包括欧氏距离、曼哈顿距离等。

  3. 选择最近邻:根据距离度量的结果,选择与待预测样本距离最近的k个训练样本作为参考。

  4. 分类或回归:对于分类问题,统计这k个样本中各类别的数量,并根据多数表决原则确定待预测样本所属的类别。对于回归问题,计算这k个样本的平均值或加权平均值,并作为待预测样本的输出值。

在kNN算法中,k的选择是一个重要的参数。较小的k值会使模型更加敏感和复杂,可能导致过拟合;而较大的k值会使模型更加平滑,可能导致欠拟合。因此,选择合适的k值是kNN算法中需要注意的问题。

需要注意的是,k近邻算法属于一种懒惰学习(lazy learning)方法,因为它在预测阶段才进行计算,没有显式的训练过程。这也使得kNN算法对训练数据集中的噪声和冗余数据比较敏感,同时在处理大规模数据时可能会面临计算复杂度高的问题。文章来源地址https://www.toymoban.com/news/detail-770151.html

到了这里,关于k近邻算法原理的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【机器学习实战】K- 近邻算法(KNN算法)

    K-近邻算法 ,又称为  KNN 算法 ,是数据挖掘技术中原理最简单的算法。 KNN  的工作原理:给定一个已知类别标签的数据训练集,输入没有标签的新数据后,在训练数据集中找到与新数据最临近的 K 个实例。如果这 K 个实例的多数属于某个类别,那么新数据就属于这个类别。

    2023年04月20日
    浏览(57)
  • 8_分类算法-k近邻算法(KNN)

    定义:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。 来源:KNN算法最早是由Cover和Hart提出的一种分类算法 K近邻(K-nearst neighbors,KNN)是一种基本的机器学习算法,所谓k近邻,就是k个最近的邻居

    2024年02月11日
    浏览(41)
  • 【机器学习】分类算法 - KNN算法(K-近邻算法)KNeighborsClassifier

    「作者主页」: 士别三日wyx 「作者简介」: CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者 「推荐专栏」: 对网络安全感兴趣的小伙伴可以关注专栏《网络安全入门到精通》 is_array() 可以 「检测」 变量是不是 「数组」 类型。 语法 参数 $var :需要检

    2024年02月16日
    浏览(42)
  • 机器学习——K近邻(KNN)算法

    目录 一、knn算法概述 1.简单介绍 2.工作原理 3.knn算法中常用的距离指标 4.knn算法优势 5.knn算法一般流程 二、knn算法经典实例——海伦约会网站 三、关于天气和旅行适合度的例子 四、总结 K近邻算法(KNN)是一种用于分类和回归的统计方法。k-近邻算法采用测量不同特征值之

    2024年01月16日
    浏览(39)
  • 机器学习——K最近邻算法(KNN)

    机器学习——K最近邻算法(KNN) 在传统机器学习中,KNN算法是一种基于实例的学习算法,能解决分类和回归问题,而本文将介绍一下KNN即K最近邻算法。 K最近邻(KNN)算法是一种基于实例的学习算法,用于分类和回归问题。它的原理是 根据样本之间的距离来进行预测 。 核

    2024年02月09日
    浏览(43)
  • 机器学习之KNN(K近邻)算法

    KNN算法又叫做K近邻算法,是众多机器学习算法里面最基础入门的算法。KNN算法是最简单的分类算法之一,同时,它也是最常用的分类算法之一。KNN算法是有监督学习中的分类算法,它看起来和Kmeans相似(Kmeans是无监督学习算法),但却是有本质区别的。 KNN算法基于实例之间

    2024年02月08日
    浏览(35)
  • 机器学习之——K近邻(KNN)算法

                    k-近邻算法(K-Nearest Neighbors,简称KNN)是一种用于分类和回归的统计方法。KNN 可以说是最简单的分类算法之一,同时,它也是最常用的分类算法之一。                 k-近邻算法基于某种距离度量来找到输入样本在训练集中的k个最近邻居,并且根据这k个

    2024年04月10日
    浏览(40)
  • 【点云上采样】最近邻插值上采样算法

    本帖更新中 点云最近邻插值上采样算法是一种常见的点云处理方法,用于将稀疏的点云数据进行上采样,增加点云的密度和细节。该算法基于最近邻的原理,在已有的点云数据中找到最近邻的点,并根据其位置和属性信息来生成新的点。 点云最近邻插值上采样算法的主要步

    2024年04月27日
    浏览(30)
  • PyTorch中的K最近邻(KNN)算法

    欢迎来到这篇博客!今天我们将深入探讨PyTorch中的K最近邻(KNN)算法,这是一种简单但非常有用的机器学习算法。无论你是机器学习初学者还是有一些经验,我们将从头开始,逐步解释KNN算法的工作原理和如何在PyTorch中实现它。 K最近邻算法是一种监督学习算法,用于分类

    2024年01月21日
    浏览(39)
  • 快速了解—机器学习、K-近邻算法及其API

    一、ML机器学习(Machine Learning) 1、应用领域:数据挖掘、自然语言处理 NLP、计算机视觉 CV等。 2、发展的 三要素 :数据、算法、算力 3、相关术语 机器学习模型 = 数据 + 算法 数据 :用于训练模型         样本(sample):一行数据         特征(feature):一列数据

    2024年01月23日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包