实时交通标志检测和分类(代码)

这篇具有很好参考价值的文章主要介绍了实时交通标志检测和分类(代码)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

实时交通标志检测和分类(代码),分类,数据挖掘,人工智能

交通标志检测和分类技术是一种基于计算机视觉和深度学习的先进技术,能够识别道路上的各种交通标志,并对其进行分类和识别。这项技术在智能交通系统、自动驾驶汽车和交通安全管理领域具有重要的应用前景。下面我将结合实时交通标志检测和分类的重要性、技术原理、应用场景和未来发展趋势,进行详细阐述。
1. 重要性:


   - 交通标志对驾驶员和行人来说至关重要,能够提供路况信息和交通规则,保障交通安全。
   - 实时交通标志检测和分类技术可以帮助自动驾驶汽车识别道路标识,做出相应反应,提高车辆的智能化程度。

2. 技术原理:


   - 实时交通标志检测和分类技术基于计算机视觉和深度学习,通过对交通标志的图像进行特征提取和模式识别,实现标志的检测和分类。
   - 该技术通常采用卷积神经网络(CNN)进行训练和识别,通过大量标注的交通标志图像数据集进行学习,从而提高检测和分类的准确性和鲁棒性。

3. 应用场景:


   - 智能交通系统:实时检测和分类交通标志,为驾驶员提供实时路况信息和警示。
   - 自动驾驶汽车:帮助车辆识别限速标志、禁止标志等,辅助自动驾驶系统做出决策。
   - 交通安全管理:监控交通标志的设置和状况,及时发现问题并进行处理。

4. 未来发展趋势:


   - 精度和速度的提升:随着深度学习和计算机硬件的不断进步,实时交通标志检测和分类技术的精度和实时性将得到进一步提升。
   - 多模态融合:结合图像、视频和雷达等多种数据源,提高交通标志检测和分类的鲁棒性和适应性。
   - 辅助决策系统:将交通标志检测和分类技术与车辆自主决策系统相结合,实现更智能、安全的交通环境。

总之,实时交通标志检测和分类技术在智能交通和自动驾驶领域具有广阔的应用前景,其发展将进一步提升交通安全和交通效率,推动智能交通系统的发展。

简介与效果

本项目是一个基于 OpenCV 的交通标志检测和分类系统,可以在视频中实时检测和分类交通标志。检测阶段使用图像处理技术,在每个视频帧上创建轮廓并找出其中的所有椭圆或圆形。它们被标记为交通标志的候选项。

实时交通标志检测和分类(代码),分类,数据挖掘,人工智能

检测策略:


增加视频帧的对比度和动态范围
增加视频帧的对比度和动态范围
使用 HSV 颜色范围删除不必要的颜色,如绿色
使用高斯拉普拉斯算子显示对象的边缘
通过二值化生成轮廓
检测椭圆状和圆形状的轮廓
在接下来的分类阶段,根据候选项的坐标从原始帧中裁剪出一组图像。预先训练的 SVM 模型将对这些图像进行分类,以确定它们属于哪种类型的交通标志。

实时交通标志检测和分类(代码),分类,数据挖掘,人工智能

所有属于类别 8 及以上的标志都被标记为“其他”,因为这是一个竞赛的要求。还有一个类别 0,被标记为非交通标志。只有当前帧中最大的标志被裁剪和分类。

SVM 模型在每次调用 main.py 时进行训练,但我仍然保存该模型在 data_svm.dat 中,以便在未来实现模型重新加载功能,避免重新训练。

如果检测到交通标志,它将被跟踪,直到它消失或者帧中出现更大的标志。跟踪方法是稠密光流法。

环境搭建与文件介绍:


先决条件: Python 3.5 OpenCV3 Imutils(使用 pip3 install imutils 安装)
系统结构 a. 有 3 个 Python 文件作为 3 个模块: main.py:程序的起始点。
classification.py:用于分类交通标志的 SVM 模型。 common.py:用于定义 SVM 模型的函数。
其他文件: data_svm.dat:训练后保存的 SVM 模型。


安装:


有两种运行程序的方式

1.Use default arguments:
 

$python3 main.py

2.Use custom arguments:
使用默认参数:

$python3 main.py
optional arguments:
  -h, --help            show this help message and exit
  --file_name FILE_NAME
                        Video to be analyzed
  --min_size_components MIN_SIZE_COMPONENTS
                        Min size component to be reserved
  --similitary_contour_with_circle SIMILITARY_CONTOUR_WITH_CIRCLE
                        Similarly to a circle


QQ767172261

结论与效果展示

我们使用GTSRB数据集训练了两个不同的模型来检测和识别交通标志。在测试数据集上,我们的模型表现出了良好的准确性和鲁棒性。未来,我们将继续改进我们的模型,以提高其在各种环境下的性能。效果展示 代码可私信。

实时交通标志检测和分类(代码),分类,数据挖掘,人工智能

因上传超过5M,所以GIF展示不出来,效果可私信。 文章来源地址https://www.toymoban.com/news/detail-770185.html

到了这里,关于实时交通标志检测和分类(代码)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于深度学习的交通标志检测识别系统(含UI界面、yolov8、Python代码、数据集)

    项目中所用到的算法模型和数据集等信息如下: 算法模型:     yolov8     yolov8主要包含以下几种创新:         1. 添加注意力机制( SE 、 CBAM 等)         2. 修改可变形卷积( DySnake -主干 c3 替换、DySnake-所有c3替换) 数据集:     网上下载的数据集,详细介绍

    2024年03月09日
    浏览(84)
  • 基于深度学习,机器学习,卷积神经网络,OpenCV的交通标志识别交通标志检测

    在本文中,使用Python编程语言和库Keras和OpenCV建立CNN模型,成功地对交通标志分类器进行分类,准确率达96%。开发了一款交通标志识别应用程序,该应用程序具有图片识别和网络摄像头实时识别两种工作方式。 设计项目案例演示地址: 链接 毕业设计代做一对一指导项目方向涵

    2024年02月02日
    浏览(57)
  • 基于PyTorch的交通标志目标检测系统

    一、开发环境 Windows 10 PyCharm 2021.3.2 Python 3.7 PyTorch 1.7.0 二、制作交通标志数据集,如下图 三、配置好数据集的地址,然后开始训练 四、训练完成后进行推理预测,效果如图 五、完整源码、数据集和模型文件下载 链接:https://pan.baidu.com/s/111wLXWLckTfrHIEGZyXeqA?pwd=w5q6 提取码:w5

    2024年02月09日
    浏览(49)
  • 基于Yolov8的中国交通标志(CCTSDB)识别检测系统

    目录 1.Yolov8介绍 2.纸箱破损数据集介绍 2.1数据集划分 2.2 通过voc_label.py得到适合yolov8训练需要的 2.3生成内容如下 3.训练结果分析          Ultralytics YOLOv8是Ultralytics公司开发的YOLO目标检测和图像分割模型的最新版本。YOLOv8是一种尖端的、最先进的(SOTA)模型,它建立在先

    2024年02月09日
    浏览(82)
  • 目标检测YOLO实战应用案例100讲-基于深度学习的交通标志小目标检测与识别研究

    目录 前言 目标检测算法相关理论  2.1 深度学习理论基础  2.1.2卷积神经网络 

    2024年02月11日
    浏览(50)
  • Opencv交通标志识别

    本文使用的数据集包含43种交通标志,使用opencv以及卷积神经网络训练模型,识别交通标志,使用pyqt5制作交通标志识别GUI的界面。 如视频中所示,可以选择交通标志,然后可以进行图像预处理操作,如灰度化,边缘检测等,最后可以点击识别按钮进行识别。 交通标志识别

    2024年02月11日
    浏览(58)
  • 毕业设计-基于机器视觉的交通标志识别系统

    目录 前言 课题背景和意义 实现技术思路 一、交通标志识别系统 二、交通标志识别整体方案 三、实验分析 四、总结 实现效果图样例 最后     📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几

    2024年02月03日
    浏览(48)
  • 竞赛 深度学习 opencv python 实现中国交通标志识别

    🔥 优质竞赛项目系列,今天要分享的是 🚩 基于深度学习的中国交通标志识别算法研究与实现 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:4分 工作量:4分 创新点:3分 🧿 更多资料, 项目分享: http

    2024年02月06日
    浏览(50)
  • 软件杯 深度学习 opencv python 实现中国交通标志识别_1

    🔥 优质竞赛项目系列,今天要分享的是 🚩 基于深度学习的中国交通标志识别算法研究与实现 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:4分 工作量:4分 创新点:3分 🧿 更多资料, 项目分享: http

    2024年03月17日
    浏览(78)
  • Android嵌入自己训练的yolov5模型(tfLite)交通标志

    目录 第一步:下载模型与修改参数 第二步:标注数据 第三步:开始训练 第四步:yolov5转为tfLite模型 第五步:我们可以检测一下tfLite是否可用 第六步:下载官方的示例代码 第七步:修改代码 第八步:运行软件 第九步:优化速率 效果图 参考:【精选】手把手教你使用YOLOV5训练自己的目标

    2024年04月12日
    浏览(61)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包