梯度提升回归树:
- 梯度提升回归树是区别于随机森林的另一种集成方法,它的特点在于纠正与加强,通过合并多个决策树来构建一个更为强大的模型。
- 该模型即可以用于分类问题,也可以用于回归问题中。
- 在该模型中,有三个重要参数分别为 n_estimators(子树数量)、learning_rate(学习率)、max_depth(最大深度)。
- n_estimators 子树数量: 通常用来设置纠正错误的子树数量,梯度提升树通常使用深度很小(1到 5之间)的子树,即强预剪枝,来进行构造强化树。并且这样占用的内存也更少,预测速度也更快。
- learning_rate 学习率: 通常用来控制每颗树纠正前一棵树的强度。较高的学习率意味着每颗树都可以做出较强的修正,这样的模型普遍更复杂。
- max_depth 最大深度: 通常用于降低每颗树的复杂度,从而避免深度过大造成过拟合的现象。梯度提升模型的 max_depth 通常都设置得很小,一般来讲不超过5。
-
梯度提升决策树是监督学习中 最强大也是最常用 的模型之一。
-
该算法无需对数据进行缩放就可以表现得很好,而且也适用于二元特征与连续特征同时存在的数据集。
-
缺点是需要进行仔细调参,且训练时间可能较长,通常不适用于高维稀疏数据。
单一KNN算法: # knn近邻算法: K-近邻算法(KNN)
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier()
knn.fit(X_train,y_train)
KNN集成算法:
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import BaggingClassifier
# 100个算法,集成算法,准确提升到了73.3%
knn = KNeighborsClassifier()
# bag中100个knn算法
bag_knn = BaggingClassifier(base_estimator=knn, n_estimators=100, max_samples=0.8,
max_features=0.7)
bag_knn.fit(X_train,y_train)
print('KNN集成算法,得分是:', bag_knn.score(X_test,y_test))
逻辑斯蒂回归集成算法:
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import BaggingClassifier
bag = BaggingClassifier(base_estimator=LogisticRegression(),n_estimators=500,
max_samples=0.8, max_features=0.5)
bag.fit(X_train,y_train)
决策树集成算法:
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import BaggingClassifier
bag = BaggingClassifier(base_estimator=DecisionTreeClassifier(),n_estimators=100,
max_samples=1.0,max_features=0.5)
bag.fit(X_train,y_train)
梯度提升回归算法:
from sklearn.ensemble import GradientBoostingRegressor
gbdt = GradientBoostingRegressor(n_estimators=3,loss = 'ls', # 最小二乘法
learning_rate=0.1)
gbdt.fit(X,y) # 训练
1、集成算法
1.1、不同集成算法
集成算法流程概述
同质学习器(也叫算法,model,模型)
-
随机森林,同质学习器,内部的100个模型,都是决策树
-
bagging:套袋法
-
随机森林
-
极端森林
-
-
boosting:提升法
-
GBDT
-
AdaBoost
-
1.2、bagging
1.3、自建集成算法(同质)
1、导包数据创建
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import BaggingClassifier
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
X,y = datasets.load_wine(return_X_y = True)
X_train,X_test,y_train,y_test = train_test_split(X,y,random_state = 1024)
2、KNN集成算法
算法原理:
# 一个算法,准确率 62%
knn = KNeighborsClassifier()
knn.fit(X_train,y_train)
print('单一KNN算法,得分是:',knn.score(X_test,y_test)) # 0.6222222222222222
# 100个算法,集成算法,准确提升到了73.3%
knn = KNeighborsClassifier()
# bag中100个knn算法
bag_knn = BaggingClassifier(base_estimator=knn,n_estimators=100,max_samples=0.8,
max_features=0.7)
bag_knn.fit(X_train,y_train)
print('KNN集成算法,得分是:',bag_knn.score(X_test,y_test)) # 0.7555555555555555
3、逻辑斯蒂回归集成算法
import warnings
warnings.filterwarnings('ignore')
lr = LogisticRegression()
lr.fit(X_train,y_train)
print('单一逻辑斯蒂算法,得分是:',lr.score(X_test,y_test)) # 0.9333333333333333
# 偶尔效果会好
bag = BaggingClassifier(base_estimator=LogisticRegression(),n_estimators=500,
max_samples=0.8, max_features=0.5)
bag.fit(X_train,y_train)
print('逻辑斯蒂集成算法,得分是:', bag.score(X_test,y_test)) # 0.9333333333333333
4、决策树自建集成算法
clf = DecisionTreeClassifier()
clf.fit(X_train,y_train)
print('单棵决策树,得分是:',clf.score(X_test,y_test)) # 0.9555555555555556
bag = BaggingClassifier(base_estimator=DecisionTreeClassifier(),n_estimators=100,
max_samples=1.0,max_features=0.5)
bag.fit(X_train,y_train)
print('决策树集成算法,得分是:',bag.score(X_test,y_test)) # 0.9777777777777777
1.4、boosting
2、GBDT
2.1、梯度提升树概述
-
gradient Boosting DecisionTree 一一> GBDT
-
Boosting :提升的,一点点靠近最优答案
-
残差
-
残差的意思就是: A的预测值 + A的残差 = A的实际值
-
残差 = 实际值 - 预测值
-
预测值 = 实际值 - 残差
-
2.2、梯度提升树应用
1、使用全量数据构建梯度提升树(0.1434)
from sklearn.ensemble import GradientBoostingRegressor
import numpy as np
import pandas as pd
# 加载数据
data_train = pd.read_csv('zhengqi_train.txt', sep='\t')
data_test = pd.read_csv('zhengqi_test.txt', sep='\t')
X_train = data_train.iloc[:,:-1]
y_train = data_train['target']
X_test = data_test
# GBDT模型训练预测
gbdt = GradientBoostingRegressor()
gbdt.fit(X_train,y_train)
y_pred = gbdt.predict(X_test)
np.savetxt('GBDT_full_feature_result.txt', y_pred)
2、使用部分数据构建梯度提升树(0.1486)
from sklearn.linear_model import ElasticNet
from sklearn.ensemble import GradientBoostingRegressor
import numpy as np
import pandas as pd
# 加载数据
data_train = pd.read_csv('zhengqi_train.txt', sep='\t')
data_test = pd.read_csv('zhengqi_test.txt', sep='\t')
X_train = data_train.iloc[:,:-1]
y_train = data_train['target']
X_test = data_test
# 先使用ElaticNet模型进行数据筛选
model = ElasticNet(alpha = 0.1, l1_ratio=0.05)
model.fit(X_train, y_train)
cond = model.coef_ != 0
X_train = X_train.iloc[:,cond]
X_test = X_test.iloc[:,cond]
print('删除数据后,形状是:',X_train.shape)
# GBDT模型训练预测
gbdt = GradientBoostingRegressor()
gbdt.fit(X_train,y_train)
y_pred = gbdt.predict(X_test)
np.savetxt('GBDT_drop_feature_result.txt', y_pred)
2.3、梯度提升树原理
1、创建数据并使用梯度提升回归树进行预测
import numpy as np
from sklearn.ensemble import GradientBoostingRegressor
import matplotlib.pyplot as plt
from sklearn import tree
import graphviz
### 实际问题,年龄预测,回归问题
# 简单的数据,算法原理,无论简单数据,还是复杂数据,都一样
# 属性一表示花销,属性二表示上网时间
X = np.array([[600,0.8],[800,1.2],[1500,10],[2500,3]])
y = np.array([14,16,24,26]) # 高一、高三,大四,工作两年
# loss = ls 最小二乘法
learning_rate = 0.1
gbdt = GradientBoostingRegressor(n_estimators=3,loss = 'ls',# 最小二乘法
learning_rate=0.1)#learning_rate 学习率
gbdt.fit(X,y)#训练
y_ = gbdt.predict(X) # 预测
2、计算残差
# 目标值,真实值,算法,希望,预测,越接近真实,模型越好!!!
print(y)
# 求平均,这个平均值就是算法第一次预测的基准,初始值
print(y.mean())
# 残差:真实值,和预测值之间的差
residual = y - y.mean()
residual
# 残差,越小越好
# 如果残差是0,算法完全准确的把数值预测出来!
3、绘制三棵树
-
第一棵树
# 第一颗树,分叉时,friedman-mse (就是均方误差)= 26
print('均方误差:',((y - y.mean())**2).mean())
dot_data = tree.export_graphviz(gbdt[0,0],filled=True)
graph = graphviz.Source(dot_data)
# 梯度下降,降低残差
residual = residual - learning_rate*residual
residual
# 输出:array([-5.4, -3.6, 3.6, 5.4])
- 第二棵树
# 第二颗树
dot_data = tree.export_graphviz(gbdt[1,0],filled=True)
graph = graphviz.Source(dot_data)
# 梯度下降,降低残差
residual = residual - learning_rate*residual
residual
# 输出:array([-4.86, -3.24, 3.24, 4.86])
- 第三棵树
# 第三颗树
dot_data = tree.export_graphviz(gbdt[2,0],filled=True)
graph = graphviz.Source(dot_data)
# 梯度下降,降低残差
residual = residual - learning_rate*residual
residual
# 输出:array([-4.374, -2.916, 2.916, 4.374])
4、使用残差计算最终结果
# 使用残差一步步,计算的结果
y_ = y - residual
print('使用残差一步步计算,最终结果是:\n',y_)
# 使用算法,预测
gbdt.predict(X)
# 两者输出结果一样
2.4、梯度提升回归树的最佳裂分条件计算
1、第一棵树,分裂情况如下:
# 计算未分裂均方误差
lower_mse = ((y - y.mean())**2).mean()
print('未分裂均方误差是:',lower_mse)
best_split = {}
for index in range(2):
for i in range(3):
t = X[:,index].copy()
t.sort()
split = t[i:i + 2].mean()
cond = X[:,index] <= split
mse1 = round(((y[cond] - y[cond].mean())**2).mean(),3)
mse2 = round(((y[~cond] - y[~cond].mean())**2).mean(),3)
p1 = cond.sum()/cond.size
mse = round(mse1 * p1 + mse2 * (1- p1),3)
print('第%d列' % (index),'裂分条件是:',split,'均方误差是:',mse1,mse2,mse)
if mse < lower_mse:
best_split.clear()
lower_mse = mse
best_split['第%d列'%(index)] = split
elif mse == lower_mse:
best_split['第%d列'%(index)] = split
print('最佳分裂条件是:',best_split)
# 输出:
'''
未分裂均方误差是: 26.0
第0列 裂分条件是: 700.0 均方误差是: 0.0 18.667 14.0
第0列 裂分条件是: 1150.0 均方误差是: 1.0 1.0 1.0
第0列 裂分条件是: 2000.0 均方误差是: 18.667 0.0 14.0
第1列 裂分条件是: 1.0 均方误差是: 0.0 18.667 14.0
第1列 裂分条件是: 2.1 均方误差是: 1.0 1.0 1.0
第1列 裂分条件是: 6.5 均方误差是: 27.556 0.0 20.667
最佳分裂条件是: {'第0列': 1150.0, '第1列': 2.1}
'''
2、第二棵树,分裂情况如下:
文章来源:https://www.toymoban.com/news/detail-770244.html
# 梯度下降,降低残差
residual = residual - learning_rate*residual
# 计算未分裂均方误差
lower_mse = round(((residual - residual.mean())**2).mean(),3)
print('未分裂均方误差是:',lower_mse)
best_split = {}
for index in range(2):
for i in range(3):
t = X[:,index].copy()
t.sort()
split = t[i:i + 2].mean()
cond = X[:,index] <= split
mse1 = round(((residual[cond] - residual[cond].mean())**2).mean(),3)
mse2 = round(((residual[~cond] - residual[~cond].mean())**2).mean(),3)
p1 = cond.sum()/cond.size
mse = round(mse1 * p1 + mse2 * (1- p1),3)
print('第%d列' % (index),'裂分条件是:',split,'均方误差是:',mse1,mse2,mse)
if mse < lower_mse:
best_split.clear()
lower_mse = mse
best_split['第%d列'%(index)] = split
elif mse == lower_mse:
best_split['第%d列'%(index)] = split
print('最佳分裂条件是:',best_split)
# 输出
'''
未分裂均方误差是: 21.06
第0列 裂分条件是: 700.0 均方误差是: 0.0 15.12 11.34
第0列 裂分条件是: 1150.0 均方误差是: 0.81 0.81 0.81
第0列 裂分条件是: 2000.0 均方误差是: 15.12 0.0 11.34
第1列 裂分条件是: 1.0 均方误差是: 0.0 15.12 11.34
第1列 裂分条件是: 2.1 均方误差是: 0.81 0.81 0.81
第1列 裂分条件是: 6.5 均方误差是: 22.32 0.0 16.74
最佳分裂条件是: {'第0列': 1150.0, '第1列': 2.1}
'''
3、第三棵树,分裂情况如下:
文章来源地址https://www.toymoban.com/news/detail-770244.html
# 梯度下降,降低残差
residual = residual - learning_rate*residual
# 计算未分裂均方误差
lower_mse = round(((residual - residual.mean())**2).mean(),3)
print('未分裂均方误差是:',lower_mse)
best_split = {}
for index in range(2):
for i in range(3):
t = X[:,index].copy()
t.sort()
split = t[i:i + 2].mean()
cond = X[:,index] <= split
mse1 = round(((residual[cond] - residual[cond].mean())**2).mean(),3)
mse2 = round(((residual[~cond] - residual[~cond].mean())**2).mean(),3)
p1 = cond.sum()/cond.size
mse = round(mse1 * p1 + mse2 * (1- p1),3)
print('第%d列' % (index),'裂分条件是:',split,'均方误差是:',mse1,mse2,mse)
if mse < lower_mse:
best_split.clear()
lower_mse = mse
best_split['第%d列'%(index)] = split
elif mse == lower_mse:
best_split['第%d列'%(index)] = split
print('最佳分裂条件是:',best_split)
# 输出
'''
未分裂均方误差是: 17.059
第0列 裂分条件是: 700.0 均方误差是: 0.0 12.247 9.185
第0列 裂分条件是: 1150.0 均方误差是: 0.656 0.656 0.656
第0列 裂分条件是: 2000.0 均方误差是: 12.247 0.0 9.185
第1列 裂分条件是: 1.0 均方误差是: 0.0 12.247 9.185
第1列 裂分条件是: 2.1 均方误差是: 0.656 0.656 0.656
第1列 裂分条件是: 6.5 均方误差是: 18.079 0.0 13.559
最佳分裂条件是: {'第0列': 1150.0, '第1列': 2.1}
'''
到了这里,关于17- 梯度提升回归树GBRT (集成算法) (算法)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!