这一次,我准备了 20节 PyTorch 中文课程

这篇具有很好参考价值的文章主要介绍了这一次,我准备了 20节 PyTorch 中文课程。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

对于刚接触深度学习的小白来说,PyTorch 是必会的框架。 只是,很多小伙伴还没来得及开启学习之路,一个最重要的问题就摆在了面前: PyTorch,该怎么学呢?

很多同学会自己在网上找资料,不仅耗费时间精力,更难以分辨资料的准确与完整,甚至可能连学习的重点都搞错了。

如果你也是个刚入门PyTorch的小白,那就千万不要错过我为你带来的《20天吃掉 PyTorch》,相信我,这也许是你能找到的最全面、系统、适合小白入门的PyTorch课程了!

内容介绍

本书是我利用工作之余大概3个月写成的,大部分读者应该在20天可以完全学会。

预计每天花费的学习时间在30分钟到2个小时之间。

当然,本书也非常适合作为 Pytorch 的工具手册在工程落地时作为范例库参考。

日期 学习内容 内容难度 预计学习时间 更新状态 B站讲解
  一、Pytorch的建模流程 ⭐️ 0hour
day1 1-1,结构化数据建模流程范例 ⭐️⭐️⭐️ 1hour
day2 1-2,图片数据建模流程范例 ⭐️⭐️⭐️⭐️ 2hour
day3 1-3,文本数据建模流程范例 ⭐️⭐️⭐️⭐️⭐️ 2hour
day4 1-4,时间序列数据建模流程范例 ⭐️⭐️⭐️⭐️⭐️ 2hour
  二、Pytorch的核心概念 ⭐️ 0hour
day5 2-1,张量数据结构 ⭐️⭐️⭐️⭐️ 1hour
day6 2-2,自动微分机制 ⭐️⭐️⭐️ 1hour
day7 2-3,动态计算图 ⭐️⭐️⭐️⭐️⭐️ 2hour
  三、Pytorch的层次结构 ⭐️ 0hour
day8 3-1,低阶API示范 ⭐️⭐️⭐️⭐️ 1hour
day9 3-2,中阶API示范 ⭐️⭐️⭐️ 1hour
day10 3-3,高阶API示范 ⭐️⭐️⭐️ 1hour
  四、Pytorch的低阶API ⭐️ 0hour
day11 4-1,张量的结构操作 ⭐️⭐️⭐️⭐️⭐️ 2hour
day12 4-2,张量的数学运算 ⭐️⭐️⭐️⭐️ 1hour
day13 4-3,nn.functional和nn.Module ⭐️⭐️⭐️⭐️ 1hour
  五、Pytorch的中阶API ⭐️ 0hour
day14 5-1,Dataset和DataLoader ⭐️⭐️⭐️⭐️ 1hour
day15 5-2,模型层 ⭐️⭐️⭐️⭐️⭐️ 2hour
day16 5-3,损失函数 ⭐️⭐️⭐️⭐️ 1hour
day17 5-4,TensorBoard可视化 ⭐️⭐️⭐️ 1hour
  六、Pytorch的高阶API ⭐️ 0hour
day18 6-1,构建模型的3种方法 ⭐️⭐️ 0.5hour
day19 6-2,训练模型的3种方法 ⭐️⭐️⭐️ 1hour
day20 6-3,使用GPU训练模型 ⭐️⭐️⭐️⭐️ 1hour
* 后记:我的产品观 ⭐️ 0hour

获取方式

好的文章离不开粉丝的分享、推荐,获取前记得点赞、收藏。

按照如下方式获取:

方式①、添加微信号:dkl88194,备注:资料
方式②、微信搜索公众号:Python学习与数据挖掘,后台回复:资料

如果你还想进一步提升技能,这个资料送你
这一次,我准备了 20节 PyTorch 中文课程,机器学习,深度学习,LLM基础,pytorch,人工智能,python,机器学习,数据挖掘,深度学习

最全面

内容包含Python基础+数学基础+PyTorch框架基础。

最系统

理论+实战+作业,课程设置环环相扣。跟着课程,一步一脚印,小白变高手!

最适合入门

不懂代码?数学不好?一样能入门深度学习!手把手教你洞悉 PyTorch 模型训练过程,彻底掌握 PyTorch 项目实战 !

本书写作风格

本书是一本对人类用户极其友善的 Pytorch入门工具书,Don’t let me think是本书的最高追求。

本书主要是在参考Pytorch官方文档和函数doc文档基础上整理写成的。

尽管Pytorch官方文档已经相当简明清晰,但本书在篇章结构和范例选取上做了大量的优化,在用户友好度方面更胜一筹。

本书按照内容难易程度、读者检索习惯和Pytorch自身的层次结构设计内容,循序渐进,层次清晰,方便按照功能查找相应范例。

本书在范例设计上尽可能简约化和结构化,增强范例易读性和通用性,大部分代码片段在实践中可即取即用。

全部源码在jupyter中编写测试通过,建议通过git克隆到本地,并在jupyter中交互式运行学习。文章来源地址https://www.toymoban.com/news/detail-771089.html

import torch 
from torch import nn

print("torch version:", torch.__version__)

a = torch.tensor([[2,1]])
b = torch.tensor([[-1,2]])
c = a@b.t()
print("[[2,1]]@[[-1],[2]] =", c.item())
torch version: 1.10.0
[[2,1]]@[[-1],[2]] = 0

到了这里,关于这一次,我准备了 20节 PyTorch 中文课程的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习入门实例-加州房价预测-1(数据准备与可视化)

    数据来源:California Housing Prices dataset from the StatLib repository,1990年加州的统计数据。 要求:预测任意一个街区的房价中位数 缩小问题:superwised multiple regressiong(用到人口、收入等特征) univariate regression(只预测一个数据)plain batch learning(数据量不大+不咋变动) 下载数据 可以

    2023年04月19日
    浏览(73)
  • 【学习笔记、面试准备】机器学习西瓜书要点归纳和课后习题参考答案——第3章

    目录地址 线性模型定义: 其中x是输入向量 优点:形式简单,易于建模,可解释性好。 输入预处理:连续值可以直接用,离散值若有序,可以按序赋值变连续(如“高,中,低”变为“1,0.5,0”,否则可以单热点码编码。 回归常用MSE,要偏导数为0,当输入是一维时可以算

    2024年02月08日
    浏览(43)
  • 【机器学习】机器学习创建算法第1篇:机器学习算法课程定位、目标【附代码文档】

    机器学习(算法篇)完整教程(附代码资料)主要内容讲述:机器学习算法课程定位、目标,K-近邻算法,1.1 K-近邻算法简介,1.2 k近邻算法api初步使用定位,目标,学习目标,1 什么是K-近邻算法,1 Scikit-learn工具介绍,2 K-近邻算法API,3 案例,4 小结。K-近邻算法,1.3 距离度量学习目标

    2024年03月11日
    浏览(85)
  • 【大厂AI课学习笔记】【2.2机器学习开发任务实例】(3)数据准备和数据预处理

    项目开始,首先要进行数据准备和数据预处理。 数据准备的核心是找到这些数据,观察数据的问题。 数据预处理就是去掉脏数据。 缺失值的处理,格式转换等。 延伸学习: 在人工智能(AI)的众多工作流程中,数据准备与预处理占据着举足轻重的地位。这两个步骤不仅影响

    2024年02月19日
    浏览(45)
  • 机器学习基本概念(李宏毅课程)

    机器学习 ≈ 训练生成一个函数f(.) ,这个函数相当复杂。 例如: 机器学习的目的是寻找一个满足需求的函数f(.),但是具体使用什么方式寻找f(.)没有说明。 深度学习为机器学习领域的一个子领域,故深度学习给出了寻找函数的方法,即通过“神经网络”来训练生成一个函数

    2024年02月21日
    浏览(44)
  • 1、中级机器学习课程简介

    本课程所需数据集夸克网盘下载链接:https://pan.quark.cn/s/9b4e9a1246b2 提取码:uDzP 欢迎来到机器学习中级课程! 如果你对机器学习有一些基础,并且希望学习如何快速提高模型质量,那么你来对地方了!在这门课程中,你将通过学习如何: 处理在真实世界数据集中经常出现的数

    2024年01月21日
    浏览(45)
  • 【Pytorch深度学习开发实践学习】B站刘二大人课程笔记整理lecture04反向传播

    lecture04反向传播 课程网址 Pytorch深度学习实践 部分课件内容: pytorch的机制是动态计算图, tensor里面既有data也有gradient

    2024年02月22日
    浏览(44)
  • 李宏毅机器学习课程笔记(更新ing)

    basic Why deep not fat model? 当需要拟合的pattern复杂度很高时,deep model需要的参数量远低于fat model(指数组合与线性组合)。 另外当pattern复杂且有规律时(语音、图像、NLP),deep model通常表现好于fat model。 CNN 为什么AlphaGo可以用CNN?棋盘抽象成图片时需要注意什么? 首先图片有

    2024年02月10日
    浏览(39)
  • 唐宇迪机器学习实战课程笔记(全)

    机器学习模型的参数,不是直接数学求解,而是利用数据,进行迭代epoch,梯度下降优化求解。 目标:更好的拟合连续函数(分割连续样本空间的平面h(·)) ε ( i ) varepsilon^{(i)} ε ( i ) 是 真实值 y ( i ) y^{(i)} y ( i ) 与 预测值 h θ ( x ) = θ T x ( i ) h_theta (x)=theta^Tx^{(i)} h θ ​ ( x )

    2024年02月16日
    浏览(46)
  • 【机器学习】吴恩达课程1-Introduction

    计算机程序从经验E中学习,解决某一任务T,进行某一性能P,通过P测定在T上的表现因经验E而提高。 跳棋程序 E:程序自身下的上万盘棋局 T:下跳棋 P:与新对手下跳棋时赢的概率 给算法一个数据集,其中包含了正确答案,算法的目的是给出更多的正确答案。 (1)预测房价

    2024年02月16日
    浏览(38)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包