我在Vscode学OpenCV 图像处理四(轮廓查找 cv2.findContours() cv2.drawContours())-- 待补充

这篇具有很好参考价值的文章主要介绍了我在Vscode学OpenCV 图像处理四(轮廓查找 cv2.findContours() cv2.drawContours())-- 待补充。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、前言

在OpenCV中,边缘检测和轮廓查找是两个不同的图像处理任务,它们有不同的目标和应用。

1.1 边缘检测和轮廓查找的区别是什么

1.1.1 边缘检测:

  • 定义: 边缘检测是指寻找图像中灰度级别变化明显的地方,即图像中物体之间的界限。这些变化通常表示图像中的边缘或轮廓。
  • 方法: 常用的边缘检测算法包括Sobel、Canny、Laplacian等。这些算法通过在图像中寻找灰度级别变化最大的地方来标记边缘。
import cv2

# 读取图像
image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)

# 使用Canny边缘检测
edges = cv2.Canny(image, 100, 200)

# 显示边缘检测结果
cv2.imshow('Edges', edges)
cv2.waitKey(0)
cv2.destroyAllWindows()

1.1.2 轮廓查找:

  • 定义: 轮廓是图像中连续的边界线,表示相同颜色或灰度的区域的边界。轮廓查找的目标是找到图像中对象的外形。
  • 方法: OpenCV提供了findContours函数来查找图像中的轮廓。这个函数返回轮廓的坐标点,然后可以通过绘制这些坐标点来可视化轮廓。
import cv2

# 读取图像
image = cv2.imread('image.jpg', cv2.IMREAD_GRAYSCALE)

# 使用Canny边缘检测
edges = cv2.Canny(image, 100, 200)

# 查找轮廓
contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

# 在原图上绘制轮廓
cv2.drawContours(image, contours, -1, (0, 255, 0), 2)

# 显示结果
cv2.imshow('Contours', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

总结:
边缘检测强调的是图像中灰度级别的变化,而轮廓查找强调的是图像中相邻区域的边界。在实际应用中,这两种技术通常可以结合使用,先进行边缘检测,然后通过轮廓查找来识别和分析图像中的对象。

1.2 边缘检测和轮廓查找在图像处理中的关系和流程

边缘检测用于发现图像中灰度变化明显的区域,但这些边缘通常是不连续的。为了构成完整的对象轮廓,需要将这些边缘连接在一起。

为了进行轮廓查找,首先需要将图像转换为二值图像,其中对象是白色,背景是黑色。这可以通过预先进行阈值分割或者边缘检测处理来实现。

轮廓查找通常会修改原始图像,因此为了保留原始图像的完整性,我们通常会在原始图像的一份拷贝上进行操作。

OpenCV中,默认情况下假设对象是白色,背景是黑色。因此,在进行轮廓查找时,确保对象是白色,背景是黑色,以确保正确识别图像中的对象轮廓。

二、查找并绘制轮廓

cv2.findContours()
cv2.drawContours()

在OpenCV中,cv2.findContours() 是用于查找图像轮廓的函数,
而 cv2.drawContours() 则是用于将查找到的轮廓绘制到图像上的函数。

2.1 cv2.findContours():

  • 这个函数用于在二值图像中查找对象的轮廓。
  • 返回轮廓的坐标点列表和层次结构(hierarchy)信息。
import cv2

# 读取图像并转换为灰度图
image = cv2.imread('image.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 进行阈值分割,得到二值图像
_, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)

# 查找轮廓
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

# contours 包含了所有轮廓的坐标点
# hierarchy 包含了轮廓的层次结构信息

2.1.1 详细介绍:

cv2.findContours() 是 OpenCV 中用于查找图像轮廓的函数。它的基本用法如下:

image, contours, hierarchy = cv2.findContours(image, mode, method)

其中各参数的含义如下:

  • image: 输入的二值图像(通常是经过阈值处理的图像)。要确保输入图像是单通道的(灰度图像)且为二值图像,可以使用 cv2.cvtColor()cv2.threshold() 进行转换和阈值处理。

  • mode: 轮廓检索模式。指定轮廓的检索模式,有以下几个可选值:

    • cv2.RETR_EXTERNAL:只检索最外层的轮廓。
    • cv2.RETR_LIST:检索所有的轮廓,并将其保存到列表中。
    • cv2.RETR_CCOMP:检索所有轮廓,并将其组织为两层的层次结构(目前不常用)。

    【建立两个等级的轮廓,上面的一层为外边界,里面的一层为内孔的边界信息。如果内孔内还有一个连通物体,这个物体的边界也在顶层。】

    • cv2.RETR_TREE:检索所有轮廓,并重构轮廓之间的完整层次结构。

    建立一个等级树结构的轮廓。

  • method: 轮廓逼近方法。指定轮廓的逼近方法,有以下几个可选值

    • cv2.CHAIN_APPROX_NONE:保存所有的轮廓点。

    存储所有的轮廓点,相邻的两个点的像素位置差不超过1,max (abs (x1-x2) , abs (y2-y1) ) ==1

    • cv2.CHAIN_APPROX_SIMPLE:压缩水平、垂直和对角方向,只保留端点。

    只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息[节约空间]

    cv2.CHAIN_APPROX_NONE 存储的轮廓,保存
    了轮廓中的每一个点;右图是使用参数值 cv2.CHAIN_APPROX_SIMPLE 存储的轮廓,仅仅保
    存了边界上的四个点。
    我在Vscode学OpenCV 图像处理四(轮廓查找 cv2.findContours() cv2.drawContours())-- 待补充,OpenCV,opencv,vscode,图像处理,python,计算机视觉,ide

    • cv2.CHAIN_APPROX_TC89_L1:使用 Teh-Chin 链逼近算法。
    • cv2.CHAIN_APPROX_TC89_KCOS:使用 Teh-Chin 链逼近算法。

函数返回三个值:

  • image: 输入图像,通常不会改变。
  • contours: 包含轮廓坐标的列表。每个轮廓由一系列坐标点表示。
  • hierarchy: 轮廓的层次结构信息,用于表示轮廓之间的嵌套关系。

示例代码:

import cv2

# 读取图像并转换为灰度图
image = cv2.imread('image.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 进行阈值分割,得到二值图像
_, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)

# 查找轮廓
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

# contours 包含了所有轮廓的坐标点
# hierarchy 包含了轮廓的层次结构信息

这个函数在图像处理中常用于对象检测、形状分析等任务。

2.1.2 注意事项:

遇到的错误 “not enough values to unpack (expected 3, got 2)” 可能是因为在OpenCV 4.x中,cv.findContours 函数只返回两个值:轮廓(contours)和层次结构(hierarchy)。在你的代码中,你试图解包三个值 (img, contours, hierachy),这导致了错误

在OpenCV的3.x版本和4.x版本之间,主要的变化之一是cv2.findContours()函数的返回值。在3.x版本中,该函数返回三个值,而在4.x版本中,只返回两个值。下面是一个简要对比:

OpenCV 3.x:

# OpenCV 3.x
img, contours, hierarchy = cv2.findContours(image, mode, method)
  • img: 原始图像
  • contours: 轮廓坐标的列表
  • hierarchy: 轮廓的层次结构信息

OpenCV 4.x:

# OpenCV 4.x
contours, hierarchy = cv2.findContours(image, mode, method)
  • contours: 轮廓坐标的列表
  • hierarchy: 轮廓的层次结构信息

如上所示,主要的变化是在4.x版本中去除了原始图像的返回,使得函数的返回结果更加简洁。如果你从3.x版本迁移到4.x版本,需要注意修改相关代码以适应新的函数返回形式。

2.2 cv2.drawContours():

  • 这个函数用于将查找到的轮廓绘制到图像上。
  • 可以选择绘制所有轮廓或者仅绘制特定的轮廓。
# 绘制所有轮廓
cv2.drawContours(image, contours, -1, (0, 255, 0), 2)

# 显示绘制轮廓后的图像
cv2.imshow('Contours', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

这两个函数通常一起使用,cv2.findContours() 用于获取轮廓信息,然后 cv2.drawContours() 用于将轮廓绘制到图像上,以便进一步分析或可视化。

2.2.1 详细介绍:

cv2.drawContours() 是 OpenCV 中用于在图像上绘制轮廓的函数。它的基本用法如下:

result = cv2.drawContours(image, contours, contourIdx, color, thickness)

其中各参数的含义如下:

  • image: 要绘制轮廓的图像。

  • contours: 包含轮廓坐标的列表,通常是由 cv2.findContours() 函数返回的轮廓。

  • contourIdx: 要绘制的轮廓在 contours 列表中的索引。如果为负数(默认值为 -1),则绘制所有的轮廓。

  • color: 绘制轮廓的颜色,通常是一个包含三个整数值的元组,表示BGR颜色。

  • thickness: 绘制轮廓的线条厚度。如果为负数,表示填充轮廓。

函数返回一个新的图像,包含了绘制了轮廓的结果。

示例代码:

import cv2
import numpy as np

# 创建一张空白图像
image = np.zeros((300, 300, 3), dtype=np.uint8)

# 创建一个包含轮廓坐标的列表
contours = np.array([[[50, 50]], [[150, 50]], [[100, 150]]], dtype=np.int32)

# 绘制轮廓
result = cv2.drawContours(image, [contours], -1, (0, 255, 0), 2)

# 显示绘制轮廓后的图像
cv2.imshow('Contours', result)
cv2.waitKey(0)
cv2.destroyAllWindows()

这个函数在图像处理中用于可视化检测到的轮廓,使得我们能够直观地观察到图像中对象的形状和边界。

2.3 实际运用

import cv2 as cv
import matplotlib.pyplot as plt

# 读取图像
image = cv.imread('img8/ss.jpg')

# 转换为灰度图
gray_image = cv.cvtColor(image, cv.COLOR_BGR2GRAY)

# 阈值处理得到二值图像
ret, binary = cv.threshold(gray_image, 127, 255, cv.THRESH_BINARY)

# 寻找轮廓
contours, hierarchy = cv.findContours(binary, cv.RETR_TREE, cv.CHAIN_APPROX_NONE)

# 在原始图像的副本上绘制轮廓
image_with_contours = image.copy()
cv.drawContours(image_with_contours, contours, -1, (122, 55, 215), 10)

# 使用 matplotlib 显示原图和带有轮廓的图像
plt.figure(figsize=(12, 6))

# 显示原图
plt.subplot(1, 2, 1)
plt.title('Original Image')
plt.imshow(cv.cvtColor(image, cv.COLOR_BGR2RGB))
plt.axis('off')

# 显示带有轮廓的图像
plt.subplot(1, 2, 2)
plt.title('Image with Contours')
plt.imshow(cv.cvtColor(image_with_contours, cv.COLOR_BGR2RGB))
plt.axis('off')

plt.show()

我在Vscode学OpenCV 图像处理四(轮廓查找 cv2.findContours() cv2.drawContours())-- 待补充,OpenCV,opencv,vscode,图像处理,python,计算机视觉,ide

2.4 标记记数,再说先前函数参数

import cv2 as cv
import matplotlib.pyplot as plt

image = cv.imread('img8/ss.jpg')
gray_image = cv.cvtColor(image, cv.COLOR_BGR2GRAY)

ret, binary = cv.threshold(gray_image, 127, 255, cv.THRESH_BINARY)

# 寻找轮廓
contours, hierarchy = cv.findContours(binary, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)

# 在原始图像的副本上绘制轮廓并标注序号
image_with_contours = image.copy()
for i, contour in enumerate(contours):
    cv.drawContours(image_with_contours, [contour], -1, (122, 55, 215), 2)
    # 标注轮廓序号
    cv.putText(image_with_contours, str(i+1), tuple(contour[0][0]), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)

# 使用 matplotlib 显示结果
plt.subplot(121), plt.imshow(cv.cvtColor(image, cv.COLOR_BGR2RGB)), plt.title('Original Image')
plt.subplot(122), plt.imshow(cv.cvtColor(image_with_contours, cv.COLOR_BGR2RGB)), plt.title('Image with Contours')
plt.show()

我在Vscode学OpenCV 图像处理四(轮廓查找 cv2.findContours() cv2.drawContours())-- 待补充,OpenCV,opencv,vscode,图像处理,python,计算机视觉,ide

2.4.1 分析代码的走向:

  1. cv.imread('img8/ss.jpg'): 从文件中读取一张图像(文件路径为 'img8/ss.jpg')。

  2. cv.cvtColor(image, cv.COLOR_BGR2GRAY): 将彩色图像转换为灰度图像。

  3. cv.threshold(gray_image, 127, 255, cv.THRESH_BINARY): 对灰度图像进行阈值处理,得到二值图像。

  4. cv.findContours(binary, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE): 寻找二值图像中的轮廓,并返回轮廓的坐标和层次结构。

  5. image_with_contours = image.copy(): 复制原始图像,用于在其上绘制轮廓。

  6. for i, contour in enumerate(contours):: 对于每个轮廓,使用enumerate获取轮廓的索引和轮廓本身。

    a. cv.drawContours(image_with_contours, [contour], -1, (122, 55, 215), 2): 在图像副本上绘制轮廓,颜色为(122, 55, 215),线条粗细为2。

    b. cv.putText(image_with_contours, str(i+1), tuple(contour[0][0]), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2): 标注轮廓序号,以文本形式显示在图像上,颜色为(0, 255, 0)(绿色),字体大小为0.5,线条粗细为2。

  7. plt.subplot(121), plt.imshow(cv.cvtColor(image, cv.COLOR_BGR2RGB)), plt.title('Original Image'): 创建Matplotlib子图,显示原始图像。

  8. plt.subplot(122), plt.imshow(cv.cvtColor(image_with_contours, cv.COLOR_BGR2RGB)), plt.title('Image with Contours'): 创建Matplotlib子图,显示带有轮廓的图像。

  9. plt.show(): 显示Matplotlib绘制的原始图像和带有轮廓的图像。

总体而言,这段代码的目的是可视化图像处理中的轮廓查找过程,通过标注轮廓序号,使用户能够更清晰地理解图像中检测到的对象的形状和位置。

2.4.2 在给轮廓标注序号的过程中,使用了OpenCV的 cv.putText() 函数。这个函数用于在图像上绘制文本,具体的用法如下:

cv.putText(img, text, org, fontFace, fontScale, color, thickness, lineType, bottomLeftOrigin)

各参数含义如下:

  • img: 需要绘制文本的图像。
  • text: 要绘制的文本内容。
  • org: 文本的起始坐标,即文本左下角的坐标。
  • fontFace: 字体类型,例如 cv.FONT_HERSHEY_SIMPLEX
  • fontScale: 字体缩放因子。
  • color: 文本的颜色。
  • thickness: 文本线条的粗细。
  • lineType: 线条类型。
  • bottomLeftOrigin: 如果为真,文本起始坐标将被认为是左下角;如果为假(默认),则为左上角。

在给轮廓标注序号的代码中,这个函数的具体应用如下:

# 标注轮廓序号
cv.putText(image_with_contours, str(i+1), tuple(contour[0][0]), cv.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2)

这一行代码的作用是将轮廓的序号以文本的形式标注在原始图像的副本上。str(i+1) 将轮廓的索引加1转换为字符串,tuple(contour[0][0]) 是轮廓的第一个点的坐标,cv.FONT_HERSHEY_SIMPLEX 是字体类型,0.5 是字体缩放因子,(255, 0, 0) 是文本颜色(蓝色),2 是文本线条的粗细。这样,每个轮廓的序号就被标注在了图像上。

(1)findContours函数的contours参数

这个呢,是标记的时候字段+1了,所以和下标错位1的

print (type(contours))
print (len(contours[0])) 
print (len(contours[1])) 
print (len(contours[2])) 
print (len(contours))

print (contours[0])
print(contours[1].shape)
print(contours[2].shape)

我在Vscode学OpenCV 图像处理四(轮廓查找 cv2.findContours() cv2.drawContours())-- 待补充,OpenCV,opencv,vscode,图像处理,python,计算机视觉,ide

(2)findContours函数的hierarchy参数
[Next,Previous,First_Child,Parent]

 Next:后一个轮廓的索引编号。
 Previous:前一个轮廓的索引编号。
 First_Child:第 1 个子轮廓的索引编号。
 Parent:父轮廓的索引编号。
如果上述各个参数所对应的关系为空时,也就是没有对应的关系时,则将该参数所对应的
值设为“-1”。
我在Vscode学OpenCV 图像处理四(轮廓查找 cv2.findContours() cv2.drawContours())-- 待补充,OpenCV,opencv,vscode,图像处理,python,计算机视觉,ide

2.4.3 分开显示

import cv2
import numpy as np
import matplotlib.pyplot as plt

o = cv2.imread('img8/ss.jpg')
plt.imshow(cv2.cvtColor(o, cv2.COLOR_BGR2RGB))
plt.title('Original Image')
plt.show()

gray = cv2.cvtColor(o, cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

n = len(contours)
contoursImg = []

for i in range(n):
    temp = np.zeros(o.shape, np.uint8)
    contoursImg.append(temp)
    contoursImg[i] = cv2.drawContours(contoursImg[i], contours, i, (255, 255, 255), 5)

    # Display each contour using plt
    plt.imshow(cv2.cvtColor(contoursImg[i], cv2.COLOR_BGR2RGB))
    plt.title(f'Contour {i + 1}')
    plt.show()

我在Vscode学OpenCV 图像处理四(轮廓查找 cv2.findContours() cv2.drawContours())-- 待补充,OpenCV,opencv,vscode,图像处理,python,计算机视觉,ide

逐步解释:

以下是对上述代码每一步的分析:

  1. 读取原始图像:

    o = cv2.imread('contours.bmp')
    plt.imshow(cv2.cvtColor(o, cv2.COLOR_BGR2RGB))
    plt.title('Original Image')
    plt.show()
    
    • 使用 OpenCV 读取名为 ‘contours.bmp’ 的图像。
    • 将图像转换为 RGB 格式,并使用 Matplotlib 显示原始图像。
  2. 灰度转换和二值化:

    gray = cv2.cvtColor(o, cv2.COLOR_BGR2GRAY)
    ret, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
    
    • 将原始图像转换为灰度图。
    • 对灰度图进行二值化处理。
  3. 查找轮廓:

    image, contours, hierarchy = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    
    • 使用 cv2.findContours() 函数查找二值图像中的轮廓。
    • cv2.RETR_EXTERNAL 参数表示只检测外部轮廓。
    • cv2.CHAIN_APPROX_SIMPLE 参数表示使用简化的轮廓表示。
  4. 绘制并显示每个轮廓:

    n = len(contours)
    contoursImg = []
    
    for i in range(n):
        temp = np.zeros(o.shape, np.uint8)
        contoursImg.append(temp)
        contoursImg[i] = cv2.drawContours(contoursImg[i], contours, i, (255, 255, 255), 5)
    
        # Display each contour using plt
        plt.imshow(cv2.cvtColor(contoursImg[i], cv2.COLOR_BGR2RGB))
        plt.title(f'Contour {i + 1}')
        plt.show()
    
    • 遍历所有检测到的轮廓,每个轮廓都被绘制在 contoursImg 的相应元素中。
    • 使用 Matplotlib 显示每个绘制了轮廓的图像,标题显示轮廓的序号。

总体而言,这段代码的目的是在原始图像中找到轮廓,然后将每个轮廓在图像上绘制出来并使用 Matplotlib 逐个显示,以便用户更好地理解轮廓检测的结果。文章来源地址https://www.toymoban.com/news/detail-771790.html

到了这里,关于我在Vscode学OpenCV 图像处理四(轮廓查找 cv2.findContours() cv2.drawContours())-- 待补充的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 我在Vscode学OpenCV 图像处理三(图像梯度--边缘检测【图像梯度、Sobel 算子、 Scharr 算子、 Laplacian 算子、Canny 边缘检测】)

    这里需要区分开边缘检测和轮廓检测 边缘检测并非万能,边缘检测虽然能够检测出边缘,但边缘是不连续的,检测到的边缘并不是一个整体。图像轮廓是指将边缘连接起来形成的一个整体,用于后续的计算。 OpenCV 提供了查找图像轮廓的函数 cv2.findContours(),该函数能够查找图

    2024年02月04日
    浏览(61)
  • 我在Vscode学OpenCV 图像处理一(阈值处理、形态学操作【连通性,腐蚀和膨胀,开闭运算,礼帽和黑帽,内核】)

    例如,设定阈值为127,然后:  将图像内所有像素值大于 127 的像素点的值设为 255。  将图像内所有像素值小于或等于 127 的像素点的值设为 0。 cv2.threshold() 和 cv2.adaptiveThreshold() 是 OpenCV 中用于实现阈值处理的两个函数,它们之间有以下区别: 1.1.1. cv2.threshold(): 这个函数

    2024年02月05日
    浏览(60)
  • OpenCV图像处理——轮廓检测

    2024年02月13日
    浏览(49)
  • Python-OpenCV中的图像处理-图像轮廓

    轮廓可以简单认为成将连续的点(连着边界)连在一起的曲线,具有相同的颜色或者灰度。轮廓在形状分析和物体的检测和识别中很有用。 为了更加准确,要使用二值化图像。在寻找轮廓之前,要进行阈值化处理或者 Canny 边界检测。 查找轮廓的函数会修改原始图像。如果你

    2024年02月13日
    浏览(66)
  • 数字图像处理【11】OpenCV-Canny边缘提取到FindContours轮廓发现

    本章主要介绍图像处理中一个比较基础的操作:Canny边缘发现、轮廓发现 和 绘制轮廓。概念不难,主要是结合OpenCV 4.5+的API相关操作,为往下 \\\"基于距离变换的分水岭图像分割\\\" 做知识储备。 在讲述轮廓之前,要花点时间学学边缘检测提取的一个著名算法——Canny边缘提取算法

    2024年02月16日
    浏览(42)
  • 图像处理ASIC设计方法 笔记18 轮廓跟踪算法的硬件加速方案

    P129 轮廓跟踪算法的硬件加速方案 如果图像中某区域存在相邻像素之间仅有对角连接的部位,则对包围该区域的像素进行跟踪时,在对角连接部位,轮廓跟踪方向可能发生转移,跨越目标区域,最终生成断裂链表或者伪孤立点链表。伪孤立点是指与相邻像素仅存在对角连通的

    2024年04月28日
    浏览(59)
  • 基于OpenCV的传统视觉应用 -- OpenCV图像处理 图像模糊处理 图像锐化处理

    图像处理是用计算机对图像进行分析,以获取所需结果的过程,又称为影像处理。图像处理一般是指数字图像的处理。数字图像是用工业相机、摄像机、扫描仪等设备经过拍摄得到的一个大的二维数组,该数组的元素称为像素,其值称为灰度值。 均值滤波是指任意一点的像素

    2024年02月07日
    浏览(74)
  • OpenCV图像处理-灰度处理

    灰度的线性变换将图像中的所有像素点的值按 线性变换函数 进行变换。 在曝光不足或过度的情况下,图像的灰度值会局限在一个很小的范围内,这时在显示器上看到的将是一个模糊不清、似乎没有层次的图像。 针对这一情况,使用一个线性单值函数对图像内的每一个像素做

    2024年02月08日
    浏览(106)
  • opencv 图像基础处理_灰度图像

    二值图像表示起来简单方便,但是因为其仅有黑白两种颜色,所表示的图像不够细腻。如果想要表现更多的细节,就需要使用更多的颜色。例如,图 2-3 中的 lena 图像是一幅灰度图像, 它采用了更多的数值以体现不同的颜色,因此该图像的细节信息更丰富。 通常,计算机会将

    2024年02月15日
    浏览(57)
  • opencv-图像处理基础-二值图像

    1.二值图像 二值图像是指仅仅包含黑色和白色两种颜色的图像。 在计算机中,通过一个栅格状排列的数据集(矩阵)来表示和处理图像。例如,图 2-1 是 一个字母 A 的图像,计算机在处理该图像时,会首先将其划分为一个个的小方块,每一个小方 块就是一个独立的处理单位

    2024年02月15日
    浏览(56)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包