『 Linux 』进程地址空间概念

这篇具有很好参考价值的文章主要介绍了『 Linux 』进程地址空间概念。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


🫙 前言

『 Linux 』进程地址空间概念,Linux,linux,运维

在c/C++中存在一种内存的概念;

一般来说一个内存的空间分布包括栈区,堆区,代码段等等;

且内存是自底向上(由0x000000000xFFFFFFFF);
以该图为例:

『 Linux 』进程地址空间概念,Linux,linux,运维

该图即为常见的内存分布图;

  • 正文代码段

    正文代码段所存放的数据一般为函数体的二进制代码;

  • 已初始化数据区

    已初始化数据区所存放的数据是在程序中声明的,并且具有初始值的变量,这些变量需要占用存储器的空间;

  • 未初始化数据区

    未初始化数据区所存放的数据是没有进行初始化或者初始值为0的数据,这些数据在存储时不需要额外占用存储器的空间;

  • 堆空间一般为动态空间,即需要成需要手动分配释放;若是分配了堆区空间但使用过后未对堆空间进行手动释放则将会出现内存泄漏的问题;

  • 一般情况下栈所存放的数据基本上都为局部变量;

  • 命令行参数/环境变量

    命令行参数/环境变量,顾名思义该段空间用来存放OS给程序所传递的命令行参数与环境变量;

  • 内核空间

    在Linux操作系统当中,内存的分布一般为其中3G为用户空间,1G为内核空间;

以下操作均在CentOS7_x64环境下进行

存在一个程序 ( mytest ) :

  int init = 10; 

  int uninit; 

int main(int argc,char *argv[],char *env[])
{
  char*ch1= new char[10]; 
  char*ch2= new char[10];
  char*ch3= new char[10];
  char*ch4= new char[10];
  char*ch5= new char[10];

  printf("init : %p\n",&init);//已初始化数据
  printf("uninit : %p\n",&uninit);//未初始化数据
  printf("text : %p\n",main);//正文代码段

  cout<<"--------------"<<endl;

    //堆区
  printf("heap1 : %p\n",ch1);
  printf("heap2 : %p\n",ch2);
  printf("heap3 : %p\n",ch3);
  printf("heap4 : %p\n",ch4);
  printf("heap5 : %p\n",ch5);
	
  cout<<"--------------"<<endl;

    //栈区
  printf("stack1 : %p\n",&ch1);
  printf("stack2 : %p\n",&ch2);
  printf("stack3 : %p\n",&ch3); 
  printf("stack4 : %p\n",&ch4);
  printf("stack5 : %p\n",&ch5);

  cout<<"--------------"<<endl;

    //命令行参数
  for(int i = 0;i<argc;++i){
    printf("argv[%d] : %p\n",i,argv[i]);
  }

  cout<<"--------------"<<endl;

    //环境变量
  for(int i = 0;env[i];++i){
    printf("env[%d] : %p\n",i,env[i]);
  }

  return 0;
}

从这段代码中可以打印出内存中不同数据的内存分布情况;

但实际上在OS层面中,这些所谓的内存并非物理内存;


🫙 进程地址空间是什么

『 Linux 』进程地址空间概念,Linux,linux,运维
在上文中说到,进程所访问的地址并不是物理地址;

存在一个程序(证明):

using namespace std;

int tmp = 100;

int main()
{
  pid_t id = fork();
  if(id == 0){
    int s = 5;
    while(1){
      cout<<"pid : "<<getpid()<<" ppid : "<<getppid()<<" tmp : "<<tmp<<" &tmp : "<<&tmp << endl;
      sleep(1);
      s--;
      if(!s) tmp = 200;
    }
  }
  else{
    while(1){
      cout<<"pid : "<<getpid()<<" ppid : "<<getppid()<<" tmp : "<<tmp<<" &tmp : "<<&tmp << endl;
    sleep(1);
    }
  }
  return 0;
}

在该程序中定义了一个全局变量,并使用fork()函数对该进程创建了一个子进程,同时分别在父子进程中打印该全局变量的值与地址;

pid : 28930 ppid : 28929 tmp : 100 &tmp : 0x60108c
pid : 28929 ppid : 28812 tmp : 100 &tmp : 0x60108c
pid : 28930 ppid : 28929 tmp : 200 &tmp : 0x60108c
pid : 28929 ppid : 28812 tmp : 100 &tmp : 0x60108c

当五秒过后,子进程修改了全局变量的值;

可在父进程当中的这个全局变量并未被更改,且父子进程中所显示的这个全局变量tmp地址相同;

然而实际上,一个程序在运行的过程中所使用的内存地址为虚拟地址(线性地址);

在过去的计算机中,进程对于内存的访问是以直接访问的形式,即运行程序时程序载入至内存当中称为进程,CPU根据进程中的代码数据对内存的各个地址(物理地址)进行操作;

『 Linux 』进程地址空间概念,Linux,linux,运维

但是由于访问的是物理内存地址,所以若是程序在内存当中误操作则会导致某些进程的崩溃;

这种操作是十分不安全的操作;

所以为了保证安全性同时也保证进程间的独立性,现在的OS当中,出现了进程地址空间的概念;

『 Linux 』进程地址空间概念,Linux,linux,运维

每个进程都存在一个称为进程地址空间的数据结构(mm_struct结构体);

在这个结构体当中以一种类似于区间的方式模拟出地址(在Linux2.6的版本中使用unsigned long类型实现);

/*释放线性区的调用方法*/
 void (*unmap_area) (struct mm_struct *mm, unsigned long addr);
#endif
    unsigned long mmap_base;		/* base of mmap area ,内存映射区的基地址*/
    unsigned long task_size;		/* size of task vm space */
    unsigned long cached_hole_size; 	/* if non-zero, the largest hole below free_area_cache */
    unsigned long free_area_cache;		/* first hole of size cached_hole_size or larger */
    pgd_t * pgd;                            /* 页表目录指针*/
    atomic_t mm_users;			/* How many users with user space?,共享进程的个数 */
    atomic_t mm_count;			/* How many references to "struct mm_struct" (users count as 1),主使用计数器,采用引用计数,描述有多少指针指向当前的mm_struct */
    int map_count;				/* number of VMAs ,线性区个数*/
    struct rw_semaphore mmap_sem;
    spinlock_t page_table_lock;		/* Protects page tables and some counters,保护页表和引用计数的锁 (使用的自旋锁)*/
 
    struct list_head mmlist;		/* List of maybe swapped mm's.	These are globally strung
                         * together off init_mm.mmlist, and are protected
                         * by mmlist_lock
                         */
    unsigned long hiwater_rss;	/* High-watermark of RSS usage,进程拥有的最大页表数目 */
    unsigned long hiwater_vm;	/* High-water virtual memory usage ,进程线性区的最大页表数目*/
    
    unsigned long total_vm, locked_vm, shared_vm, exec_vm;
    unsigned long stack_vm, reserved_vm, def_flags, nr_ptes;
    unsigned long start_code, end_code, start_data, end_data;     /*维护代码区和数据区的字段*/
    unsigned long start_brk, brk, start_stack;       /*维护堆区和栈区的字段*/
    unsigned long arg_start, arg_end, env_start, env_end;  /*命令行参数的起始地址和尾地址,环境变量的起始地址和尾地址*/
    unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */

除此之外在进程地址空间这个结构体中有一个指针,这个指针所指向的位置即为页表;

所谓的页表就是一种映射关系,这种映射关系以一种key/value的模型将对应的物理地址与虚拟地址进行一种存储,在查找或访问时将访问至虚拟地址,通过该虚拟地址通过页表的key/value模型找到其对应的物理内存再进行访问;

在CPU中存在一个内存管理单元(MMU),这个内存管理单元是CPU中的一个模块,这个模块具体的作用为负责虚拟地址到物理地址的转换;

『 Linux 』进程地址空间概念,Linux,linux,运维

以该图为例,其中task_struct表示PCB结构体,即进程控制块;

mm_struct即为该进程的进程地址空间,mm_struct中的pgd即为页表;


🫙 写时拷贝

『 Linux 』进程地址空间概念,Linux,linux,运维

当多个进程或线程共享同一块内存时,内核会使用写时拷贝来优化内存的复制行为;

当有一个进程尝试修改共享内存页面时,Linux内核会触发写时拷贝机制;

它会为修改的进程创建一个新的私有副本,并将修改的内容写入新的副本中,而不是立即修改原始的共享页面;

以该例子为例:

using namespace std;

int tmp = 100;

int main()
{
  pid_t id = fork();
  if(id == 0){
    int s = 5;
    while(1){
      cout<<"pid : "<<getpid()<<" ppid : "<<getppid()<<" tmp : "<<tmp<<" &tmp : "<<&tmp << endl;
      sleep(1);
      s--;
      if(!s) tmp = 200;
    }
  }
  else{
    while(1){
      cout<<"pid : "<<getpid()<<" ppid : "<<getppid()<<" tmp : "<<tmp<<" &tmp : "<<&tmp << endl;
    sleep(1);
    }
  }
  return 0;
}

在该例子中程序运行的结果为:

pid : 28930 ppid : 28929 tmp : 100 &tmp : 0x60108c
pid : 28929 ppid : 28812 tmp : 100 &tmp : 0x60108c
pid : 28930 ppid : 28929 tmp : 200 &tmp : 0x60108c
pid : 28929 ppid : 28812 tmp : 100 &tmp : 0x60108c

两个进程中的变量的地址相同但其值不同的原因就是在于其所在的虚拟地址相同但页表中虚拟地址所映射的物理地址不同;

在这个程序当中,使用fork()函数创建了子进程,由于子进程是由父进程创建的,所以对应的子进程的PCB结构体继承于父进程,即当父进程创建出一个子进程时,该子进程将会对父进程的PCB结构体进行一次浅拷贝,所以父子进程所对应的代码资源是共享的;

『 Linux 』进程地址空间概念,Linux,linux,运维

在只读的情况下两个进程的页表所映射至的物理地址也许相同的,而当一个进程要修改该物理内存中的内容时,OS将会重新在物理内存中申请一块空间,同时修改该进程所对应的页表映射关系;

『 Linux 』进程地址空间概念,Linux,linux,运维


🫙 可执行程序中的虚拟地址

『 Linux 』进程地址空间概念,Linux,linux,运维
实际在可执行程序当中也存在着所谓的虚拟地址,在一般的教材当中也被称为"逻辑地址";

存在一个程序:

#include<iostream>
using namespace std;

int g_val = 100;

int main()
{
  cout<<&g_val<<endl;
  return 0;
}

这个程序运行之后可以打印出该程序中全局变量g_val的地址;

在Linux中存在一个命令可以打印出一个可执行程序中的逻辑地址(虚拟地址),即objdump;

语法:

objdump -x <executable_file>

在此处配合| grep打印出该可执行程序中的虚拟地址,即:

objdump -x mytest | grep g_val

使用该命令后运行该程序:

$ objdump -x mytest | grep g_val
00000000004007f7 l     F .text	0000000000000015              _GLOBAL__sub_I_g_val
000000000060105c g     O .data	0000000000000004              g_val
$ ./mytest 
0x60105c

在上面的程序当中,程序运行的结果(打印全局变量地址)与使用objdump所显示出磁盘中的全局变量g_val地址相同,由此可见其进程中的虚拟地址与本在磁盘中的虚拟地址相同;

实际上在计算机当中,本质上无论是磁盘中的虚拟地址(逻辑地址)还是在进程当中的虚拟地址都是相同的;

只不过是在进程与磁盘中的表现形式不同;

当程序编译链接完成时生成的可执行程序当中将会存在代码数据等,在这些代码数据当中存在着静态的虚拟地址,这些地址被称作逻辑地址;

当这个程序被执行后即被加载至内存当中成为进程时,进程将会去初始化自身的PCB结构体;相对应的PCB结构体内的各种数据结构也将要被进行维护与初始化;

磁盘中的虚拟地址(逻辑地址)将会初始化PCB结构体中对应的进程地址空间,使得进程地址空间中的虚拟地址与原本磁盘内的虚拟地址(逻辑地址)保持一致;

『 Linux 』进程地址空间概念,Linux,linux,运维


🫙 物理地址分布方式

『 Linux 』进程地址空间概念,Linux,linux,运维
在上面的图中可以发现:

在对进程地址空间进行初始化时,真正将虚拟地址与物理地址进行关联的时候,其物理地址并没有按照原本的虚拟地址原模原样的进行对应的初始化;

『 Linux 』进程地址空间概念,Linux,linux,运维

在对对应物理地址进行初始化时更像是以一种随机的方式;

为了物理内存的安全性,Linux中采用了一种地址空间随机化(ASLR)的一种内存攻击缓存技术;

当对应的进程地址空间的虚拟地址在初始化时通过页表映射至物理内存时将会采用这种方式;

使得对应进程的物理内存地址无法被预测,也保证了进程在运行时的安全性;文章来源地址https://www.toymoban.com/news/detail-771873.html

到了这里,关于『 Linux 』进程地址空间概念的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【Linux】进程周边006之进程地址空间

      👀 樊梓慕: 个人主页  🎥 个人专栏: 《C语言》 《数据结构》 《蓝桥杯试题》 《LeetCode刷题笔记》 《实训项目》 《C++》 《Linux》 🌝 每一个不曾起舞的日子,都是对生命的辜负 目录 前言 1.程序地址空间 1.1验证地址空间的排布  1.2利用fork函数观察当子进程修改某个共

    2024年02月04日
    浏览(38)
  • Linux:进程地址空间

    目录 1.程序地址空间  2.进程地址空间 我们在讲C/C++语言的时候,32位平台下,我们见过这样的空间布局图 我们来验证一下这张图的正确性: 运行结果: 通过观察静态变量的位置,可以认为静态变量就是全局变量,只是静态变量只初始化一次,有作用域的限制。 这里栈区还

    2024年02月04日
    浏览(40)
  • 【Linux】深挖进程地址空间

    作者简介:დ旧言~,目前大二,现在学习Java,c,c++,Python等 座右铭:松树千年终是朽,槿花一日自为荣。 目标:熟悉【Linux】进程地址空间 毒鸡汤:也许有一天,你发觉日子特别的艰难,那可能是这次的收获特别的巨大。 望小伙伴们点赞👍收藏✨加关注哟💕💕      

    2024年02月03日
    浏览(38)
  • 【Linux】理解进程地址空间

    🍎 作者: 阿润菜菜 📖 专栏: Linux系统编程 ​我们在学习C语言的时候,都学过内存区域的划分如栈、堆、代码区、数据区这些。但我们其实并不真正理解内存 — 我们之前一直说的内存是物理上的内存吗? 我们先看一段测试代码: 运行结果: 我们可以注意到子进程的变量

    2024年02月02日
    浏览(51)
  • 浅析Linux进程地址空间

    现代处理器基本都支持虚拟内存管理,在开启虚存管理时,程序只能访问到虚拟地址,处理器的内存管理单元(MMU)会自动完成虚拟地址到物理地址的转换。基于虚拟内存机制,操作系统可以为每个运行中的进程创建独享的虚拟地址空间,在这个空间中执行的程序,无法感知

    2024年01月20日
    浏览(37)
  • 【Linux】—— 进程地址空间

    序言: 在上篇中,我们讲解了关于进程优先级的概念。本期,我将给大家介绍的是关于进程地址空间的话题。 目录 (一)程序地址空间回顾 (二)代码演示 (三)进程地址空间的引入 总结 我们在学习C/C++语言的时候,大家可能都见过这样的空间布局图: 一个程序有哪些

    2024年02月15日
    浏览(40)
  • Linux--进程地址空间

    1.线程地址空间 所谓进程地址空间(process address space),就是从进程的视角看到的地址空间,是进程运行时所用到的虚拟地址的集合。 简单地说,进程就是内核数据结构和代码和本身的代码和数据,进程本身不能访问物理地址,之时候就需要有一个中间媒介,就是地址空间,

    2024年02月11日
    浏览(41)
  • 【Linux】进程理解与学习Ⅳ-进程地址空间

    环境:centos7.6,腾讯云服务器 Linux文章都放在了专栏:【 Linux 】欢迎支持订阅 🌹 相关文章推荐: 【Linux】冯.诺依曼体系结构与操作系统 【Linux】进程理解与学习Ⅰ-进程概念 浅谈Linux下的shell--BASH 【Linux】进程理解与学习Ⅱ-进程状态 【Linux】进程理解与学习Ⅲ-环境变量 在

    2023年04月14日
    浏览(77)
  • 【Linux取经路】初探进程地址空间

    之前在介绍 fork 函数的时候说过该函数返回了两次,至于为什么会返回两次,以及 fork 函数是如何做到返回两次的,在【Linux取经路】揭秘进程的父与子一文中已经做了详细的解释,忘了小伙伴可以点回去看看。在解释一个变量怎么会有两个不同值的时候,当时的说法是由于

    2024年01月21日
    浏览(47)
  • 【Linux进行时】进程地址空间

    我们在讲C语言的时候,老师给大家画过这样的空间布局图,但是我们对它不了解 我们写一个代码来验证Linux进程地址空间 这里没什么问题,就是他们的g_valule 和其地址都是一样的, 我们将代码调整一下,让子进程的g_value++ 我们可以发现子进程的g_value变了,但是父进程没有

    2024年02月08日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包