【Spark数仓项目】需求八:MySQL的DataX全量导入和增量导入Hive
一、mysql全量导入hive[分区表]
需求介绍:
本需求将模拟从MySQL中向Hive数仓中导入数据,数据以时间分区。测试两种导入场景,一种是将数据全量导入,即包含所有时间分区;另一种是每天运行调度,仅导入当天时间分区中的用户数据。
- mysql表建表语句:
create table t_order(
id int primary key auto_increment,
amt decimal(10,2),
`status` int default 0,
user_id int,
create_time timestamp DEFAULT CURRENT_TIMESTAMP,
modify_time timestamp DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
)
- hive
create table t_order(
id int,
amt decimal(10,2),
`status` int,
user_id int,
create_time date,
modify_time date
)partitioned by (dt string)
row format delimited
fields terminated by '\t'
注意字段时间戳,我们将从以上MySQL向Hive导入数据。
- 编写datax的json脚本
{
"job": {
"content": [
{
"reader": {
"name": "mysqlreader",
"parameter": {
"connection": [
{
"jdbcUrl": ["jdbc:mysql://hadoop10:3306/spark-dw"],
"querySql": [
"select id,amt,status,user_id,create_time,modify_time from t_order"
]
}
],
"password": "0000",
"username": "root",
}
},
"writer": {
"name": "hdfswriter",
"parameter": {
"column": [
{"name": "id","type": "int"},
{"name": "amt","type": "double"},
{"name": "status","type": "int"},
{"name": "user_id","type": "int"},
{"name": "create_time","type": "string"},
{"name": "modify_time","type": "string"}
],
"defaultFS": "hdfs://hadoop10:8020",
"fieldDelimiter": "\t",
"fileName": "t_order",
"fileType": "text",
"path": "/user/hive/warehouse/test_hive.db/t_order/dt=$dt",
"writeMode": "append"
}
}
}
],
"setting": {
"speed": {
"channel": "1"
}
}
}
}
- 执行导入操作
在mysql中添加测试数据 导入mysql中7-11的数据到hive下7-11分区
insert into t_order(amt,user_id) values(100,1001)
insert into t_order values(null,100,0,1001,'2023-07-11 10:18:39','2023-07-11 10:18:39')
insert into t_order values(null,120,0,1001,'2023-07-11 10:18:39','2023-07-11 10:18:39')
在hive下创建分区
alter table t_order add partition(dt='2023-07-11')
运行dataX脚本
python /opt/installs/datax/bin/datax.py -p "-Ddt=2023-07-11" /opt/installs/datax/job/mysql2hive.json
此部分的操作是将先插入mysql的三条数据导入到hive。
在mysql中添加测试数据 导入mysql中7-12的数据到hive下7-12分区
insert into t_order values(null,200,0,1001,'2023-07-12 10:18:39','2023-07-12 10:18:39');
insert into t_order values(null,220,0,1001,'2023-07-12 10:18:39','2023-07-12 10:18:39');
在hive下创建分区
alter table t_order add partition(dt='2023-07-12')
运行datax脚本
python /opt/installs/datax/bin/datax.py -p "-Ddt=2023-07-12" /opt/installs/datax/job/mysql2hive.json
此部分的操作是将先插入mysql的三条数据和本次插入mysql的数据都导入到hive。
根据查询结果可以看到,此时我们重复导入了第一部分的数据,这就是全量导入。
二、mysql增量导入hive
大方向
:事实表用增量[订单表] 维度表用全量[商品表]
绝大部分公司采用的方案:全量为主、增量为辅
要想采用增量导入还有一个问题是你的业务库表能够支持增量导入
1. 增量导入的第一种实现方法
根据 id主键,查询hive表中最大的id值,然后去mysql中查询大于上述id值的数据。
如果有些使用uuid的,则不能用id,这种方案不适用于对修改的数据进行同步。
2. 另一种方法是 时间字段
在表中增加一个modify_time字段,如果数据新增或者修改,可以根据这个字段查询数据抽取到hive
3. dataX脚本
{
"job": {
"content": [
{
"reader": {
"name": "mysqlreader",
"parameter": {
"connection": [
{
"jdbcUrl": ["jdbc:mysql://hadoop10:3306/spark-dw"],
"querySql": [
"select id,amt,status,user_id,create_time,modify_time from t_order where date_format(modify_time,'%Y-%m-%d') = '$dt'"
]
}
],
"password": "0000",
"username": "root",
}
},
"writer": {
"name": "hdfswriter",
"parameter": {
"column": [
{"name": "id","type": "int"},
{"name": "amt","type": "double"},
{"name": "status","type": "int"},
{"name": "user_id","type": "int"},
{"name": "create_time","type": "string"},
{"name": "modify_time","type": "string"}
],
"defaultFS": "hdfs://hadoop10:8020",
"fieldDelimiter": "\t",
"fileName": "t_order",
"fileType": "text",
"path": "/user/hive/warehouse/test_hive.db/t_order/dt=$dt",
"writeMode": "append"
}
}
}
],
"setting": {
"speed": {
"channel": "1"
}
}
}
}
运行该增量脚本,即可按照分区的日期,每次导入需要的mysql数据到hive。
三、利用Python自动生成Datax的json脚本
1. 创建mysql和hive数据库
create table t_student(
id int PRIMARY key,
name varchar(50),
`age` int
);
create table t_person(
id int PRIMARY key,
name varchar(50),
parentid int
);
INSERT into t_student values
(1,'zhanmusi',15),
(2,'lisi',55),
(3,'lisi',66);
INSERT into t_person values
(1,'miky',06),
(2,'tom',16),
(3,'jakcon',26);
create table ods_t_student(
id int,
name string,
`age` int
)partitioned by (dt string)
row format delimited
fields terminated by '\t'
create table ods_t_person(
id int,
name string,
parentid int
)partitioned by (dt string)
row format delimited
fields terminated by '\t'
2. 修改python脚本里面的密码(2处)和hdfs端口
import json
import sys
import pymysql
def gen_json(dbname, tablename):
s1 = {
"job": {
"content": [
{
"reader": {
"name": "mysqlreader",
"parameter": {
"connection": [
{
"jdbcUrl": ["jdbc:mysql://hadoop10:3306/" + dbname + "?useSSL=false"],
"table": [tablename]
}
],
"password": "0000", # 密码
"username": "root",
"column": getColumn(dbname, tablename)
}
},
"writer": {
"name": "hdfswriter",
"parameter": {
"column": getColumnAndType(dbname, tablename),
"defaultFS": "hdfs://hadoop10:8020", # hdfs端口
"fileType": "text",
"path": "/user/hive/warehouse/ods_" + tablename + "/dt=$dt",
"fieldDelimiter": "\t",
"fileName": tablename,
"writeMode": "append"
}
}
}
],
"setting": {
"speed": {
"channel": "1"
}
}
}
}
with open('d:/test/' + tablename + '.json', 'w') as f:
json.dump(s1, f)
def queryDataBase(dbname, tablename):
conn = pymysql.connect(user='root', password='0000', host='hadoop10') # 密码
cursor = conn.cursor()
cursor.execute(
"select column_name ,data_type from information_schema.`COLUMNS` where TABLE_SCHEMA = %s and table_name = %s order by ordinal_position",
[dbname, tablename])
fetchall = cursor.fetchall()
cursor.close()
conn.close()
return fetchall
def getColumn(dbname, tablename):
k1 = queryDataBase(dbname, tablename)
k2 = list(map(lambda x: x[0], k1))
return k2
def getColumnAndType(dbname, tablename):
k1 = queryDataBase(dbname, tablename)
mappings = {
'bigint': 'bigint',
'varchar': 'string',
'int': 'int',
'datetime': 'string',
'text': 'string'
}
k2 = list(map(lambda x: {"name": x[0], "type": mappings[x[1].lower()]}, k1))
return k2
if __name__ == '__main__':
l = sys.argv[1:]
dbname = l[0] # mysql数据库名
tablename = l[1] # 表名
gen_json(dbname, tablename)
3. 运行python脚本
(untitled0606) C:\Users\Lenovo\PycharmProjects\untitled0606>python .\test0606\test_gen.py spark-dw t_student
(untitled0606) C:\Users\Lenovo\PycharmProjects\untitled0606>python .\test0606\test_gen.py spark-dw t_person
4. 将生成的json文件上传到linux
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-oB30wKR6-1689299346463)(上课笔记-day13.assets\1689068747698.png)]文章来源:https://www.toymoban.com/news/detail-772063.html
5. 编写shell脚本 b.sh
#! /bin/bash
dt=$1
if [ ''$1 == '' ]
then
dt=$(date -d yesterday +%Y-%m-%d)
fi
echo $dt
s=$(hive -e "show partitions ods_t_student partition(dt='$dt')")
echo === $s ====
if [ "$s" == "partition" ]
then
hive -e "alter table ods_t_student add partition(dt='$dt')"
else
echo "$dt分区已经存在"
fi
python /opt/installs/datax/bin/datax.py -p "-Ddt=$dt" /opt/installs/datax/job/t_student.json
s=$(hive -e "show partitions ods_t_person partition(dt='$dt')")
echo === $s ====
if [ "$s" == "partition" ]
then
hive -e "alter table ods_t_person add partition(dt='$dt')"
else
echo "$dt分区已经存在"
fi
python /opt/installs/datax/bin/datax.py -p "-Ddt=$dt" /opt/installs/datax/job/t_person.json
6. 运行shell
root@hadoop10 app]# sh b.sh 2023-07-13
文章来源地址https://www.toymoban.com/news/detail-772063.html
任务启动时刻 : 2023-07-13 02:31:38
任务结束时刻 : 2023-07-13 02:31:50
任务总计耗时 : 12s
任务平均流量 : 2B/s
记录写入速度 : 0rec/s
读出记录总数 : 3
读写失败总数 : 0
- hive
id|name |age|dt |
--|--------|---|----------|
1|zhanmusi| 15|2023-07-13|
2|lisi | 55|2023-07-13|
3|lisi | 66|2023-07-13|
到了这里,关于【Spark数仓项目】需求八:MySQL的DataX全量导入和增量导入Hive的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!