SVM(支持向量机)-机器学习

这篇具有很好参考价值的文章主要介绍了SVM(支持向量机)-机器学习。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

支持向量机(Support Vector Machine,SVM)是一种用于分类和回归分析的监督学习算法。它属于机器学习中的一类强大而灵活的模型,广泛应用于模式识别、图像分类、自然语言处理等领域。
SVM(支持向量机)-机器学习,机器学习,机器学习,支持向量机,算法

基本原理:
SVM的基本原理是通过找到能够有效分隔不同类别的超平面来进行分类。在二维空间中,这个超平面就是一条直线,而在更高维空间中,它是一个超平面。SVM的目标是找到这个超平面,使得距离超平面最近的训练样本点(支持向量)到超平面的距离尽可能远,这个距离被称为间隔(margin)。

支持向量:
支持向量是指离超平面最近的那些训练样本点,它们对于定义超平面和间隔至关重要。在训练过程中,SVM主要关注这些支持向量,而其他样本点对于模型的影响较小。

核函数:
SVM可以通过核函数将输入空间映射到更高维的特征空间。这允许SVM在非线性问题上进行处理,通过将非线性问题转化为高维线性问题来解决。常用的核函数包括线性核、多项式核、径向基函数(Radial Basis Function,RBF)等
核函数是支持向量机(SVM)中的一个重要概念,它用于将输入空间映射到更高维的特征空间。这个映射使得SVM在原始的输入空间中线性不可分的问题变得在高维特征空间中线性可分。核函数的引入是为了处理非线性问题,使得SVM能够更好地适应各种数据分布。

在SVM中,核函数的作用是计算两个样本之间的相似度或内积。通过核函数,我们可以在高维空间中隐式地表示数据点,而无需显式计算数据点在高维空间中的坐标。这种技巧被称为"核技巧"(kernel trick)。

常用的核函数有几种类型:

  1. 线性核函数(Linear Kernel):
    K ( x , y ) = x T y K(x, y) = x^Ty K(x,y)=xTy

    这是最简单的核函数,它表示在原始的输入空间中进行线性分类。

  2. 多项式核函数(Polynomial Kernel):
    K ( x , y ) = ( x T y + c ) d K(x, y) = (x^Ty + c)^d K(x,y)=(xTy+c)d

    多项式核函数引入了多项式的概念,其中 d d d是多项式的次数, c c c是一个常数。它允许SVM在原始空间中处理多项式特征。

  3. 径向基函数(Radial Basis Function,RBF)或高斯核函数(Gaussian Kernel):
    K ( x , y ) = e − ∣ ∣ x − y ∣ ∣ 2 2 σ 2 K(x, y) = e^{-\frac{||x-y||^2}{2\sigma^2}} K(x,y)=e2σ2∣∣xy2

    RBF核函数是最常用的核函数之一,它通过将数据映射到无穷维的特征空间,从而适应更为复杂的非线性关系。 σ \sigma σ是控制函数宽度的参数。

  4. sigmoid核函数(Sigmoid Kernel):
    K ( x , y ) = tanh ⁡ ( α x T y + c ) K(x, y) = \tanh(\alpha x^Ty + c) K(x,y)=tanh(αxTy+c)

    Sigmoid核函数也是一种常见的核函数,它通过类似于神经网络的激活函数(双曲正切函数)来进行非线性映射。

选择合适的核函数通常依赖于具体问题的性质和数据的分布。在实践中,RBF核函数是默认选择,因为它在很多情况下表现良好。核函数的选择也可能受到调参的影响,因为核函数参数的不同取值可能导致模型性能的差异。

软间隔和硬间隔:
在实际应用中,数据可能不是线性可分的,或者存在噪音。为了处理这些情况,SVM引入了软间隔,允许一些样本点出现在间隔内。这就是软间隔支持向量机,相对于严格线性可分的硬间隔支持向量机。
SVM(支持向量机)-机器学习,机器学习,机器学习,支持向量机,算法

应用:
SVM在许多领域都有广泛的应用,包括文本分类、图像识别、生物信息学、金融预测等。由于其强大的泛化性能和对高维数据的适应能力,SVM在实际问题中取得了很好的效果。

总体而言,SVM是一种强大而灵活的机器学习算法,特别适用于处理复杂的非线性问题。

Question:
Q1:能够画出多少条线对样本点进行区分?
答:线是有无数条可以画的,区别就在于效果好不好,每条线都可以叫做一个划分超平面。比如上面的绿线就不好,蓝线还凑合,红线看起来就比较好。我们所希望找到的这条效果最好的线就是具有 “最大间隔的划分超平面”。

Q2:为什么要叫作“超平面”呢?
答:因为样本的特征很可能是高维的,此时样本空间的划分就不是一条线了。

Q3:画线的标准是什么?什么才叫这条线的效果好?哪里好?
答:SVM 将会寻找可以区分两个类别并且能使间隔(margin)最大的划分超平面。比较好的划分超平面,样本局部扰动时对它的影响最小、产生的分类结果最鲁棒、对未见示例的泛化能力最强。

Q4:间隔(margin)是什么?
答:对于任意一个超平面,其两侧数据点都距离它有一个最小距离(垂直距离),这两个最小距离的和就是间隔。比如下图中两条虚线构成的带状区域就是 margin,虚线是由距离中央实线最近的两个点所确定出来的(也就是由支持向量决定)。但此时 margin 比较小,如果用第二种方式画,margin 明显变大也更接近我们的目标。文章来源地址https://www.toymoban.com/news/detail-772205.html

到了这里,关于SVM(支持向量机)-机器学习的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习——支持向量机SVM

    支持向量机(SVM)是一种二类分类模型,其基本模型是在特征空间上找到最佳的分离超平面使得训练集上正负样本间隔最大,间隔最大使它有别于感知机,支持向量机也可通过核技巧使它成为非线性分类器。支持向量机的学习策略是间隔最大化,可将其转化为一个求解凸二次

    2024年01月17日
    浏览(52)
  • SVM(支持向量机)-机器学习

    支持向量机(Support Vector Machine,SVM) 是一种用于分类和回归分析的监督学习算法 。它属于机器学习中的一类强大而灵活的模型,广泛应用于模式识别、图像分类、自然语言处理等领域。 基本原理: SVM的基本原理是通过找到能够有效分隔不同类别的超平面来进行分类。在二维

    2024年02月03日
    浏览(48)
  • 机器学习-支持向量机SVM

    在本练习中,我们将使用支持向量机(SVM)来构建垃圾邮件分类器。 我们将从一些简单的2D数据集开始使用SVM来查看它们的工作原理。 然后,我们将对一组原始电子邮件进行一些预处理工作,并使用SVM在处理的电子邮件上构建分类器,以确定它们是否为垃圾邮件。 我们要做

    2024年02月12日
    浏览(51)
  • 【机器学习】支持向量机SVM入门

    相较于之前学习的线性回归和神经网络,支持向量机(Supprot Vector Machine,简称SVM)在拟合复杂的非线性方程的时候拥有更出色的能力,该算法也是十分经典的算法之一。接下来我们需要学习这种算法 首先我们回顾逻辑回归中的经典假设函数,如下图: 对于任意一个实例 (

    2024年02月15日
    浏览(52)
  • 机器学习(六)支持向量机(SVM)

    目录 1.间隔与支持向量 1.1线性可分 1.2支持向量 1.3 最大间隔超平面 2.对偶问题 2.1拉格朗日乘子法 2.2 SMO算法 2.3SMO算法代码实现 3.核函数 4. SVM实例(手写体数字识别) 5.实验总结 支持向量机(SVM) 是有监督学习中最有影响力的机器学习算法之一,一般用于解决二分类问题(

    2024年02月09日
    浏览(51)
  • 【机器学习】SVM支持向量机模型

     本站原创文章,转载请说明来自 《老饼讲解-机器学习》 ml.bbbdata.com 目录 一. SVM的目标和思想    1.1 SVM硬间隔模型的原始目的 1.2 SVM的直接目标 1.3 什么是支持向量  二. SVM的支持平面的表示方式 2.1 支持面表示方式的初步思路 2.2 初步思路的缺陷与改进 2.3 支持面的最终表示

    2023年04月23日
    浏览(183)
  • 机器学习:基于支持向量机(SVM)进行人脸识别预测

    作者:i阿极 作者简介:Python领域新星作者、多项比赛获奖者:博主个人首页 😊😊😊如果觉得文章不错或能帮助到你学习,可以点赞👍收藏📁评论📒+关注哦!👍👍👍 📜📜📜如果有小伙伴需要数据集和学习交流,文章下方有交流学习区!一起学习进步!💪 专栏案例:

    2024年01月23日
    浏览(45)
  • 第29步 机器学习分类实战:支持向量机(SVM)建模

    支持向量机(SVM)建模。 先复习一下参数(传送门),需要调整的参数有: ① kernel:{‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’},默认为’rbf’。使用的核函数,必须是“linear”,“poly”,“rbf”,“sigmoid”,“precomputed”或者“callable”中的一个。 ② c:浮点

    2024年02月02日
    浏览(64)
  • 机器学习实战:Python基于支持向量机SVM-RFE进行分类预测(三)

    1.1 支持向量机的介绍 支持向量机( Support Vector Machine,SVM )是一种监督学习的分类算法。它的基本思想是找到一个能够最好地将不同类别的数据分开的超平面,同时最大化分类器的边际(margin)。SVM的训练目标是最大化间隔(margin),即支持向量到超平面的距离。 具体地,

    2024年02月05日
    浏览(61)
  • 传统机器学习(七)支持向量机(1)超平面、SVM硬间隔、软间隔模型和损失函数

    1.1.1 超平面公式 我们对“平面”概念的理解,一般是定义在三维空间中的,如下: 假设M和M0为平面上的两点,n为该平面的法向量,那么,通过下图可以容易推导出三维空间中的平面方程: A x + B y + C z + D = 0 Ax + By+Cz+D=0 A x + B y + C z + D = 0 我们把A、B、C写作w,把x、y、z写作x,

    2023年04月27日
    浏览(57)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包