1 基础知识
暂无。。。
2 模板
暂无。。。
3 工程化
题目1:最长严格上升子序列,要求时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn)。
解题思路:保存每个长度下的最小的结尾元素值,遍历数组元素时,通过二分找到它,然后更新它即可,返回len。
该算法的关键步骤如下:
- 定义向量
vec
,vec[i]
表示所有长度为i+1
的上升子序列的集合,该集合当中最后一个元素最小的那个值。很显然可以知道,vec
中的元素满足严格单调递增(根据vec[i]
的定义即可得到)。 - 遍历原先的数组中的每一个元素
x
,在vec
中找到>=x
的第一个元素的下标idx
:如果这个下标不存在,往vec
中插入元素x
;否则vec[idx] = x
。
C++代码如下,文章来源地址https://www.toymoban.com/news/detail-772255.html
#include <iostream>
#include <vector>
using namespace std;
const int N = 1e5 + 10;
int n;
int a[N];
int main() {
cin >> n;
for (int i = 0; i < n; ++i) cin >> a[i];
vector<int> vec;
for (int i = 0; i < n; ++i) {
//在vec中找到>=a[i]的第一个元素的下标
int idx = lower_bound(vec.begin(), vec.end(), a[i]) - vec.begin();
if (idx == vec.size()) {//表示没有找到
vec.emplace_back(a[i]);
} else {
vec[idx] = a[i];
}
}
cout << vec.size() << endl;
return 0;
}
题目1扩展1:求最长严格下降子序列。要求算法时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn)。
解题思路:将原先数组reverse一遍,等价于题目1。
题目2:最小编辑距离。有三种操作,插入、删除和替换,求将字符串a变成字符串b的最小操作次数。
解题思路:DP,考虑最后一次操作次数。
状态定义,f[i][j]
:将字符串a的前i位变为字符串b的前j位的最小操作次数。
状态转移,有
- 最后一次操作是插入操作,则说明操作前已经匹配了字符串b的前j-1位,故
f[i][j - 1] + 1
。 - 最后一次操作是删除操作,则说明操作前字符串a的前i-1位已经匹配了字符串b的前j位,故
f[i - 1][j] + 1
。 - 最后一次操作是替换操作,则说明操作前字符串a的前i-1位已经匹配了字符串b的前j-1位,但可能
a[i] == b[j]
,则f[i - 1][j - 1]
;否则f[i - 1][j - 1] + 1
。
初始化,f[i][0]
表示将a的前i位变成b的前0位,则值为i
。f[0][j]
表示将a的前0位变成b的前j位,则值为j
。
最终答案,f[n][m]
。
C++代码为,
#include <iostream>
using namespace std;
const int N = 1010;
int n, m;
char a[N], b[N];
int f[N][N];
int main() {
cin >> n >> a + 1;
cin >> m >> b + 1;
for (int i = 0; i <= n; ++i) f[i][0] = i;
for (int j = 0; j <= m; ++j) f[0][j] = j;
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
f[i][j] = min(f[i-1][j] + 1, f[i][j-1] + 1);
if (a[i] == b[j]) f[i][j] = min(f[i][j], f[i-1][j-1]);
else f[i][j] = min(f[i][j], f[i-1][j-1] + 1);
}
}
cout << f[n][m] << endl;
return 0;
}
题目3:编辑距离。
思路:就是将题目2的实现套用过来,调用多次即可。
C++代码如下,
#include <iostream>
#include <cstring>
using namespace std;
const int N = 1010, M = 20;
int n, m;
char str[N][M];
int f[M][M];
int get_dis(char a[], char b[]) {
int la = strlen(a + 1), lb = strlen(b + 1);
for (int i = 0; i <= la; ++i) f[i][0] = i;
for (int j = 0; j <= lb; ++j) f[0][j] = j;
for (int i = 1; i <= la; ++i) {
for (int j = 1; j <= lb; ++j) {
f[i][j] = min(f[i-1][j] + 1, f[i][j-1] + 1);
f[i][j] = min(f[i][j], f[i-1][j-1] + (a[i] != b[j]));
}
}
return f[la][lb];
}
int main() {
cin >> n >> m;
for (int i = 1; i <= n; ++i) cin >> str[i] + 1;
for (int j = 1; j <= m; ++j) {
int limit;
char b[20];
cin >> b + 1 >> limit;
int res = 0;
for (int i = 1; i <= n; ++i) {
if (get_dis(str[i], b) <= limit) res += 1;
}
cout << res << endl;
}
return 0;
}
题目4:整数划分问题。给定整数
n
n
n,求有多少种划分方案。比如3
有1+1+1
、1+2
和3
这3种划分方案。
思路:它属于计数类DP。
(解法一)
状态定义,f[i][j]
:从前i个数中选,总和为j的方案数。
考虑最后一次选法,状态转移,有,
- 不选第i个数,即
f[i-1][j]
。 - 选1个第i个数,即
f[i-1][j-i]
。 - 选2个第i个数,即
f[i-1][j - 2 * i]
…… - 选s个第i个数,即
f[i-1][j - s * i]
。
故,综合上述,f[i][j]
状态转移为,
f[i][j] = f[i-1][j] + f[i-1][j-i] + f[i-1][j - 2 * i] + f[i-1][j - 3 * i] + ... + f[i-1][j - s * i]
考虑状态f[i][j-i]
的状态转移,有
f[i][j-i] = f[i-1][j-i] + f[i-1][j - 2 * i] + f[i-1][j - 3 * i] + ... + f[i-1][j - s * i]
故f[i][j]
的状态转移可以写成,
f[i][j] = f[i-1][j] + f[i][j-i]
初始化,f[0][0] = 1
。
同时利用滚动数组优化,可以有如下C++代码,
#include <iostream>
using namespace std;
const int N = 1010, mod = 1e9 + 7;
int n;
int f[N];
int main() {
cin >> n;
f[0] = 1;
for (int i = 1; i <= n; ++i) {
for (int j = i; j <= n; ++j) {
f[j] = (f[j] + f[j-i]) % mod;
}
}
cout << f[n] << endl;
return 0;
}
(解法二)
状态表示f[i][j]
:总和是i,有j个数,的所有方案数。
f[i][j]
的状态转移,有,
- 拆分出来的数的最小值是1,即·
f[i-1][j-1]
。 - 拆分出来的数的最小值大于1,即
f[i-j][j]
。
f[i][j]
的状态转移为,
f[i][j] = f[i-1][j-1] + f[i-j][j]
初始化,f[0][0] = 1
。
最终答案,f[n][1] + f[n][2] + ... + f[n][n]
。文章来源:https://www.toymoban.com/news/detail-772255.html
C++代码如下,
#include <iostream>
using namespace std;
const int N = 1010, mod = 1e9 + 7;
int n;
int f[N][N];
int main() {
cin >> n;
f[0][0] = 1;
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= i; ++j) {
f[i][j] = (f[i-1][j-1] + f[i-j][j]) % mod;
}
}
int res = 0;
for (int j = 1; j <= n; ++j) res = (res + f[n][j]) % mod;
cout << res << endl;
return 0;
}
到了这里,关于acwing算法基础之动态规划--DP习题课1的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!