1 环境说明
注意:以下所有操作都在root用户下完成 sudo su - root
ip |
操作系统版本 |
用途 |
192.168.30.18 |
Ubuntu 18.04.4 LTS |
jobmanager容器、nfs服务(存储flink的checkpoint、savepoint) |
192.168.30.17 |
Ubuntu 18.04.4 LTS |
taskmanager02容器 |
192.168.30.16 |
Ubuntu 18.04.4 LTS |
taskmanager01容器 |
2 部署nfs
在192.168.30.18节点上操作
2.1安装nfs软件包
# apt-get install rpcbind -y
# apt-get install nfs-kernel-server -y
2.2 配置参数,映射checkpoints存储目录
# vim /etc/exports
/home/liuchan/config/flink/ 192.168.30.0/24(rw,sync,no_root_squash,no_all_squash)
2.3 重启nfs服务并加入开机自启动
# systemctl restart rpcbind
# systemctl enable rpcbind
# systemctl restart nfs-kernel-server
# systemctl enable nfs-kernel-server
2.4 查看nfs状态
# rpcinfo -p localhost
program vers proto port service
100000 4 tcp 111 portmapper
100000 3 tcp 111 portmapper
100000 2 tcp 111 portmapper
100000 4 udp 111 portmapper
100000 3 udp 111 portmapper
100000 2 udp 111 portmapper
100005 1 udp 34715 mountd
100005 1 tcp 46897 mountd
100005 2 udp 48806 mountd
100005 2 tcp 39469 mountd
100005 3 udp 41227 mountd
100005 3 tcp 34733 mountd
100003 3 tcp 2049 nfs
100003 4 tcp 2049 nfs
100227 3 tcp 2049
100003 3 udp 2049 nfs
100227 3 udp 2049
100021 1 udp 35642 nlockmgr
100021 3 udp 35642 nlockmgr
100021 4 udp 35642 nlockmgr
100021 1 tcp 42347 nlockmgr
100021 3 tcp 42347 nlockmgr
100021 4 tcp 42347 nlockmgr
2.5 查看nfs映射信息
# exportfs -v
/home/liuchan/config/flink
192.168.30.0/24(rw,wdelay,no_root_squash,no_subtree_check,sec=sys,rw,secure,no_root_squash,no_all_squash)
3 客户端挂载nfs
在192.168.30.16、17节点上操作
3.1 安装nfs挂载工具
# apt install nfs-common
# showmount -e 192.168.30.18
Export list for 192.168.30.18:
/home/liuchan/config/flink 192.168.30.0/24
3.2 创建挂载目录
# mkdir -p /home/liuchan/config/flink
3.3 挂载nfs并写入到/etc/fstab
# echo '192.168.30.18:/home/liuchan/config/flink /home/liuchan/config/flink nfs defaults 0 0' >> /etc/fstab
# mount -a
4 集群通用配置说明
4.1 docker-compose说明
1 compose目录结构
# tree -LFa 1 flink/
flink
├── conf/ # flink容器配置文件目录
├── docker-compose.yml # docker-compose配置文件
├── Dockerfile # 构建flink镜像用到的Dockerfile文件
├── .env # docker-compose环境变量文件
├── flink-1.10.0.tar.gz # 构建flink镜像用到的flink-1.10.0压缩包
├── jdk1.8.0_251.tar.gz # 构建flink镜像用到的jdk1.8.0_251压缩包
├── log/ # flink容器日志目录
├── run.sh # 构建flink镜像用到的flink容器启动脚本
└── tmp/ # flink容器临时文件目录
3 directories, 6 files
2 .env文件
# cat flink/.env
IMAGE=flink:1.10.0-v01
FLINK_HOME=/usr/local/flink-1.10.0
3 Dockerfile文件
# cat flink/Dockerfile
FROM centos:7
LABEL maintainer lc
ARG FLINK_VERSION=flink-1.10.0
ARG JDK_VERSION=jdk1.8.0_251
RUN yum install wget curl unzip iproute net-tools -y && \
yum clean all && \
rm -rf /var/cache/yum/* && \
ln -sf /usr/share/zoneinfo/Asia/Shanghai /etc/localtime
ADD ${FLINK_VERSION}.tar.gz /usr/local
ADD ${JDK_VERSION}.tar.gz /usr/local
ENV JAVA_HOME /usr/local/${JDK_VERSION}
ENV CLASSPATH $JAVA_HOME/lib/tools.jar:$JAVA_HOME/jre/lib/rt.jar
ENV PATH $JAVA_HOME/bin:$PATH
ENV FLINK_HOME=/usr/local/${FLINK_VERSION}
COPY run.sh /root
WORKDIR ${FLINK_HOME}
EXPOSE 8081 6123
ENTRYPOINT ["/root/run.sh"]
4 run.sh文件
#!/bin/bash
FLINK_JOB_MANAGER_SH=$FLINK_HOME/bin/jobmanager.sh
FLINK_TASK_MANAGER_SH=$FLINK_HOME/bin/taskmanager.sh
case "$1" in
"jobmanager")
$FLINK_JOB_MANAGER_SH start-foreground
;;
"taskmanager")
$FLINK_TASK_MANAGER_SH start-foreground
;;
*)
echo "COMMAND ERROR"
;;
esac
4.2 flink集群配置文件
1 修改flink-conf.yaml
# vim flink/conf/flink-conf.yaml
# jobmanager节点地址
jobmanager.rpc.address: 192.168.30.18
# checkpoints保留的个数,全局配置
state.checkpoints.num-retained: 16
# Blog Server
taskmanager.rpc.port: 40010-40020
# Task Manager
metrics.internal.query-service.port: 40030-40040
# Metrics
blob.server.port: 40050-40060
2 修改masters
# vim flink/conf/masters
192.168.30.18:8081
3 修改slaves
# cat flink/conf/slaves
192.168.30.16
192.168.30.17
5 启动容器
5.1 jobmanager
192.168.30.18节点
1 docker-compose.yml配置文件
# cat flink/docker-compose.yml
version: '3'
networks:
rulr-network:
external: true
services:
flink-1.10.0-v01:
image: flink:1.10.0-v01
build:
context: ./
dockerfile: Dockerfile
jobmanager:
container_name: jobmanager
hostname: jobmanager
image: ${IMAGE}
volumes:
- ./conf:${FLINK_HOME}/conf
- ./tmp/jobmanager-tmp:/tmp
- ./log/jobmanager-log:${FLINK_HOME}/log
- /home/liuchan/config/flink:/home/liuchan/config/flink
- /home/liuchan/servers/compute-streaming:/home/liuchan/servers/compute-streaming
- /home/liuchan/config/servers:/home/liuchan/config/servers
ports:
- "8081:8081"
- "6123:6123"
- "40010-40020:40010-40020"
- "40030-40040:40030-40040"
- "40050-40060:40050-40060"
command: jobmanager
restart: always
networks:
- rulr-network
deploy:
resources:
limits:
cpus: '2'
memory: 2G
2 构建容器
# cd flink-jobmanager/
# docker-compose build
# docker-compose up -d
5.2 taskmanager02
192.168.30.17节点
1 docker-compose.yml配置文件
# cat flink/docker-compose.yml
version: '3'
networks:
rulr-network:
external: true
services:
flink-1.10.0-v01:
image: flink:1.10.0-v01
build:
context: ./
dockerfile: Dockerfile
taskmanager02:
container_name: taskmanager02
hostname: taskmanager02
image: ${IMAGE}
ports:
- "40010-40020:40010-40020"
- "40030-40040:40030-40040"
- "40050-40060:40050-40060"
volumes:
- ./conf:${FLINK_HOME}/conf
- ./tmp/taskmanager02-tmp:/tmp
- ./log/taskmanager02-log:${FLINK_HOME}/log
- /home/liuchan/config/flink:/home/liuchan/config/flink
command: taskmanager
restart: always
networks:
- rulr-network
deploy:
resources:
limits:
cpus: '2'
memory: 2G
2 构建容器
# cd flink-taskmanager02/
# docker-compose build
# docker-compose up -d
5.3 taskmanager01
192.168.30.16节点
1 docker-compose.yml配置文件
# cat flink/docker-compose.yml
version: '3'
networks:
rulr-network:
external: true
services:
flink-1.10.0-v01:
image: flink:1.10.0-v01
build:
context: ./
dockerfile: Dockerfile
taskmanager01:
container_name: taskmanager01
hostname: taskmanager01
image: ${IMAGE}
ports:
- "40010-40020:40010-40020"
- "40030-40040:40030-40040"
- "40050-40060:40050-40060"
volumes:
- ./conf:${FLINK_HOME}/conf
- ./tmp/taskmanager01-tmp:/tmp
- ./log/taskmanager01-log:${FLINK_HOME}/log
- /home/liuchan/config/flink:/home/liuchan/config/flink
command: taskmanager
restart: always
networks:
- rulr-network
deploy:
resources:
limits:
cpus: '2'
memory: 2G
2 构建容器
# cd flink-taskmanager01/
# docker-compose build
# docker-compose up -d
6 运行flink任务
6.1 运行jar包
# docker exec -it flink-jobmanager bash
[root@jobmanager flink-1.10.0]# bin/flink run -d /home/liuchan/servers/compute-streaming/compute-streaming.jar --appMode=2
6.2 在flink的UI页面查看
URL: http://192.168.30.18:8081/
# 总体概览
# Task Managers信息
# 查看JOB详细信息
6.3 测试
1 停掉正在运行job的TaskManager容器
从上面的截图可以判断出ip为172.18.0.10容器正在运行job,该容器在192.168.30.17服务器上。停掉taskmanager02容器。
# cd flink-taskmanager02/
# docker-compose down
2 在flink的UI中查看
从下图可以看到,job经历超时报错后,运行的TaskManager节点由taskmanager02容器转移到了taskmanager01容器
3 恢复taskmanager02容器
# cd flink-taskmanager02/
# docker-compose up -d
# 在flink的UI可以看到taskmanager02容器又上线了
7 Checkpoint、Savepoint
7.1 Checkpoint、Savepoint说明
1 Checkpoint
(1) Flink Checkpoint是一种容错恢复机制。这种机制保证了实时程序运行时,即使突然遇到异常也能够进行自我恢复,不需要用户指定。Checkpoint是增量做的,每次的时间较短,数据量较小。
(2) Checkpoint对于用户层面,是透明的,用户会感觉程序一直在运行。
(3) Flink Checkpoint是Flink自身的系统行为,用户无法对其进行交互,用户可以在程序启动之前,设置好实时程序Checkpoint相关参数,当程序启动之后,剩下的就全交给Flink自行管理。
(4) Checkpoint默认关闭,Checkpoint的启用、存储方式、存储位置,在应用代码中配置,其中存储方式、存储位置,也可以在flink-conf.yaml文件中通过state.backend、state.checkpoints.dir参数配置全局参数,但应用代码中配置优先级更高。
(5) Checkpoint 默认保留数为1,通过修改flink-conf.yaml文件中state.checkpoints.num-retained参数设置Checkpoint保留数量。
(6) Checkpoint默认job程序取消后删除,在应用代码中通过设置以下代码实现保留:
"getCheckpointConfig().enableExternalizedCheckpoints(ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);"
(5) Checkpoint的组成:Checkpoint根目录/CheckpointID
2 Savepoint
(1) Flink Savepoint你可以把它当做在某个时间点程序状态全局镜像,以后程序在进行升级,或者修改bug、并行度等情况,还能从保存的状态位继续启动恢复,需要用户指定。是全量做的,每次的时间较长,数据量较大。
(2) Flink Savepoint一般存储在文件系统上面,它需要用户主动进行触发。
(3) Savepoint会一直保存,除非用户删除。
(4) flink-conf.yaml文件state.savepoints.dir参数用以配置savepoints的存储目录,默认none。
(5) Savepoint的组成:Savepoint根目录/savepoint-jobid前六位-12随机数字及字母组合
7.2 flink常用命令
1 通用命令
(1) 命令执行
bin/flink run [OPTIONS] <jar-file> <arguments>
options:
-d: 任务提交后,断开session,会话继续保持,即表示将job放到后台运行。
示例:后台运行job
# bin/flink run -d /home/liuchan/servers/compute-streaming/compute-streaming.jar --appMode=2
(2) 查看任务列表
bin/flink list [OPTIONS]
options:
-a: 全部显示所有程序及其作业ID
-r: 仅显示正在运行的程序及其作业ID
-s: 仅显示计划的程序及其作业ID
示例:查看正在运行的job
# bin/flink list -r
2 操作Savepoint
(1) 在取消任务时保存Savepoint
bin/flink cancel [OPTIONS] <Job ID>
options:
-s: 触发保存点并取消作业。目标目录是可选的。如果未指定目录,则
配置的默认目录使用(state.savepoints.dir)。
官方文档已经不推荐使用,建议使用stop。
示例:
# bin/flink cancel -s /home/liuchan/config/flink/savepoints 1af3e95778850085614d175657948369
(2) 在停止任务时保存Savepoint
bin/flink stop [OPTIONS] <Job ID>
options:
-p: <savepointPath>保存点的路径,如果没有指定目录时,将使
用默认值配置(state.savepoints.dir)。
示例:
# bin/flink stop -p /home/liuchan/config/flink/savepoints 1504a27aaecba591877a68a233ee9240
(3) 触发Savepoint
bin/flink savepoint [OPTIONS] <Job ID> [<target directory>]
options:
示例:
# bin/flink savepoint 3b74f51cc4186aa4bf5bf84e7e716d0f /home/liuchan/config/flink/savepoints
(4) 从指定的savepoint运行job
bin/flink run [OPTIONS] <jar-file> <arguments>
options:
-s: 从savepoint<savepointPath>路径到用于还原作业的保存点
示例:
# bin/flink run -d -s /home/liuchan/config/flink/savepoints/savepoint-1af3e9-7a3891c86538 /home/liuchan/servers/compute-streaming/compute-streaming.jar --appMode=2
3 取消和停止job的区别如下文章来源:https://www.toymoban.com/news/detail-772459.html
(1) cancel()调用,立即调用作业算子的cancel()方法,以尽快取消他们。如果算子在接
到cancel()调用后没有停止,flink将开始定期中断算子线程的执行,直到所有算子停止
为止。
(2) stop()是更加优雅的方式,仅适用于source实现了stoppableFunction接口的作业。
当用户请求停止作业时,作业的所有source都将被stop()方法调用,指导所有source
正常关闭时,作业才会正常结束,这种方式,使作业正常处理完所有作业。文章来源地址https://www.toymoban.com/news/detail-772459.html
到了这里,关于flink集群(docker版)配置及使用的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!