【数据结构】动态规划(Dynamic Programming)

这篇具有很好参考价值的文章主要介绍了【数据结构】动态规划(Dynamic Programming)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一.动态规划(DP)的定义:

求解决策过程(decision process)最优化的数学方法。

将多阶段决策过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解。

二.动态规划的基本思想:

与分治法类似,将待求解问题分解成若干个子问题

但是经分解得到的子问题往往不是相互独立的。

如果使用分治法求解问题,有些子问题被重复计算了多次。

而“如何减少子问题的重复计算”是动态规划算法的关键思想。

问题:如何减少子问题的重复计算呢?

解决方案:保存已解决的子问题的答案,在需要的时候找出已经求得的答案。

三.动态规划的基本步骤

1.找出最优解的性质,并刻划其结构特征。即:寻找最优解的子问题结构。

2.递归地定义最优解。即:根据子问题的结构建立问题的递归解式,求解最优值。

3.以自底向上的方式计算出最优值。

4.根据计算最优值时得到的信息,构造最优解。

四.例题分析——多个矩阵连乘模块设计

问题描述:

实现多个矩阵连乘功能

关键问题计算:

给定n个矩阵{},其中与【数据结构】动态规划(Dynamic Programming),数据结构,动态规划,算法是可乘的,考察这n个矩阵的连乘积

由于矩阵乘法满足结合律,所以计算矩阵的连乘可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。

若一个矩阵连乘积的计算次序完全确定,也就是说该矩阵已完全加括号,则可以依此次序反复调用3个矩阵相乘的标准算法计算出矩阵连乘积。

完全加括号的矩阵连乘积:

设有四个矩阵 A,B,C,D 维数分别为:

50*10;10*40;40*30;30*5

则总共有五种完全加括号的方式:

1)

(A((BC)D))

2)

(A(B(CD)))

3)

((AB)(CD))

4)

(((AB)C)D)

5)

((A(BC))D)

对于两个矩阵A(p*q)*B(q*r)(标准乘法计算):

void matrixMultiply(int *a,int *b,int *c,int ra,int ca,int rb,int cb){
    if(ca!=rb){
        cout<<"矩阵不可乘!"<<endl;
    }
    else{
        int i,j,k,n,sum=0;
        for(i=0;i<ra;i++){
            for(j=0;j<cb;j++){
                for(k=0;k<ca;k++){
                    sum+=a[i*ca+k]*b[k*cb+j];
                }
                c[i*ra+j]=sum;
                sum=0;
            }
        }
        
    }
}

需要进行p*q*r次乘法计算!

矩阵连乘问题转化为:

确定矩阵连乘的计算次序,使得按照该次序计算矩阵连乘需要的数乘次数最少。

1.穷举法求解思路:

        列举出所有可能的计算次序,并计算出每一种次序相应需要的数乘次数,从中找出一种数乘次数最少的计算次序。

算法复杂度分析:

对于n个矩阵的连乘积,设其不同的计算次序为P(n)

由于每种加括号方式都可以分解为两个子矩阵的加括号的问题

【数据结构】动态规划(Dynamic Programming),数据结构,动态规划,算法

2.动态规划求解:

最优解结构分析:

将矩阵连乘积【数据结构】动态规划(Dynamic Programming),数据结构,动态规划,算法简记为:A[i:j],这里i<=j。

设这个计算次序在和【数据结构】动态规划(Dynamic Programming),数据结构,动态规划,算法之间将矩阵断开,i<=k<j,则其相应的完全加括号的方式为:

【数据结构】动态规划(Dynamic Programming),数据结构,动态规划,算法)(【数据结构】动态规划(Dynamic Programming),数据结构,动态规划,算法)

总计算量=A[i:k]的计算量加上A[k+1:j]的计算量,再加上A[i:k]和A[k+1:j]相乘的计算量。

特征:计算A[i:j]的最优次序所包含的计算矩阵子链A[i:k]和A[k+1:j]的次序也是最优的。

最优子结构性质:最优解包含其子问题的最优解。

建立递归关系:(m[i,j]表示最小连乘次数)

当i=j时,A[i:j]=,m[i,j]=0

当i<j时,m[i,j]={m[i,k]+m[k+1,j]+}

则有:

【数据结构】动态规划(Dynamic Programming),数据结构,动态规划,算法

(k的位置只有j-i种可能) 

注:由于矩阵乘法中的列数和【数据结构】动态规划(Dynamic Programming),数据结构,动态规划,算法的行数相等,则可以只用列数来化简表达式,这里的均表示第i-1,k,j个矩阵的列数。n个矩阵的信息,只需要一个长度为n+1的数组来表示即可。

对于m[i][j]数组,只需要填入上三角中的元素即可(因为i<=j)。

五.代码实现文章来源地址https://www.toymoban.com/news/detail-772711.html

#include <iostream>
using namespace std;
int BestValue(int row[],int col[], int n);
int main(int argc, const char * argv[]) {
    int row[]={3,4,6};
    int col[]={4,6,11};
    cout<<BestValue(row, col, 3);
    return 0;
}
int BestValue(int row[],int col[], int n){
    if(n<=0){
        cout<<"error";
        return 0;
    }
    int m[40][40];
    int i,j,k,r,sum;
    for(i=0;i<n-1;i++){
        if(col[i]!=row[i+1]){
            cout<<"error"<<endl;
            return 0;
        }
    }
    for(i=0;i<n;i++){
        m[i][i]=0;
    }
    for(r=1;r<n;r++){
        for(j=r;j<n;j++){
            i=j-r;
            sum=m[i][i]+m[i+1][j]+row[i]*col[i]*col[j];
            for(k=i;k<j;k++){
                if(sum>m[i][k]+m[k+1][j]+row[i]*col[k]*col[j]){
                    sum=m[i][k]+m[k+1][j]+row[i]*col[k]*col[j];
                }
            }
            m[i][j]=sum;
        }
    }
    return m[0][n-1];
}

到了这里,关于【数据结构】动态规划(Dynamic Programming)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • LC狂刷66道Dynamic-Programming算法题。跟动态规划说拜拜

    一种是从 (i-1, j) 这个位置走一步到达 一种是从(i, j - 1) 这个位置走一步到达 因为是计算所有可能的步骤,所以是把所有可能走的路径都加起来,所以关系式是 dp[i] [j] = dp[i-1] [j] + dp[i] [j-1]。 步骤三、找出初始值 显然,当 dp[i] [j] 中,如果 i 或者 j 有一个为 0,那么还能使用关

    2024年04月10日
    浏览(42)
  • 动态规划Dynamic Programming

     上篇文章我们简单入门了动态规划(一般都是简单的上楼梯,分析数据等问题)点我跳转,今天给大家带来的是路径问题,相对于上一篇在一维中摸爬滚打,这次就要上升到二维解决问题,但都用的是动态规划思想嘛,所以大差不差,且听我慢慢道来。 还是用一样的方法,

    2024年03月27日
    浏览(52)
  • 动态规划(Dynamic Programming)详解

    引言: 动态规划(Dynamic Programming,简称DP)是计算机科学与数学领域中的一个经典算法设计策略,用于解决具有重叠子问题和最优子结构特性的复杂问题。它通过将问题分解为更小的子问题来避免重复计算,从而提高效率。本文旨在详细介绍动态规划的基本概念、原理、实现

    2024年04月13日
    浏览(41)
  • 浅析动态规划(Dynamic Programming,DP)

    动态规划可以理解为递归,只不过递归是通过函数实现,动态规划通过循环实现! 动态规划有多好用我就不过多介绍,写这篇文章的时候我也不是熟练掌握,只是单纯记录一下我的学习经历并分享一些我的心得体会,仅此而已。 推荐看一下这个视频,对你的理解应该会有所

    2024年04月27日
    浏览(41)
  • 数据结构与算法-动态规划

    (我猜是做的多了背的题多了就自然懂了) 迭代法一般没有通用去重方式,因为已经相当于递归去重后了 这两个问题其实是一个问题,一般直接写出的没有去重的递归法,复杂度很高,此时需要使用备忘录去重,而备忘录去重时间复杂度和使用dp数组进行迭代求解时间复杂度相同

    2024年02月04日
    浏览(46)
  • Dynamic-Programming(动态规划)最细解题思路+代码详解(1)

    案例二:二维数组的 DP 我做了几十道 DP 的算法题,可以说,80% 的题,都是要用二维数组的,所以下面的题主要以二维数组为主,当然有人可能会说,要用一维还是二维,我怎么知道?这个问题不大,接着往下看。 问题描述 一个机器人位于一个 m x n 网格的左上角 (起始点在

    2024年04月26日
    浏览(38)
  • python算法与数据结构---动态规划

    记不住过去的人,注定要重蹈覆辙。 对于一个模型为n的问题,将其分解为k个规模较小的子问题(阶段),按顺序求解子问题,前一子问题的解,为后一子问题提供有用的信息。在求解任一子问题时,通过决策求得局部最优解,依次解决各子问题。最后通过简单的判断,得到

    2024年02月20日
    浏览(76)
  • 数据结构与算法之贪心&动态规划

            一:思考         1.某天早上公司领导找你解决一个问题,明天公司有N个同等级的会议需要使用同一个会议室,现在给你这个N个会议的开始和结束 时间,你怎么样安排才能使会议室最大利用?即安排最多场次的会议?电影的话 那肯定是最多加票价最高的,入场

    2024年02月09日
    浏览(47)
  • Java数据结构与算法----动态规划(背包篇)

    1.1.算法思路 0/1背包是动态规划、背包问题中最经典的问题啦!它主要的问题是: 给定n种物品、这n种物品的重量分别是,价值分别是 ,而你有一个容量为C的背包,请问如何求出所能拿的最大价值呢? 对于动态规划,我们先需要找到一条推导公式,然后确定边界: 我们设

    2024年02月07日
    浏览(50)
  • python数据结构与算法-动态规划(最长公共子序列)

    一个序列的子序列是在该序列中删去若干元素后得 到的序列。 例如:\\\"ABCD”和“BDF”都是“ABCDEFG”的子序列。 最长公共子序列(LCS) 问题: 给定两个序列X和Y,求X和Y长度最大的公共子字列。 例:X=\\\"ABBCBDE”Y=\\\"DBBCDB”LCS(XY)=\\\"BBCD\\\" 应用场景:字符串相似度比对 (1)问题思考 思考: 暴

    2024年02月08日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包