【嵌入式】STM32进阶-OLED显示时间+温度和湿度

这篇具有很好参考价值的文章主要介绍了【嵌入式】STM32进阶-OLED显示时间+温度和湿度。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

0.前言
在本次实验中,我们将学习如何使用STM32微控制器和OLED显示屏,实现显示时间、温度和湿度的功能。这个应用场景在很多项目中都非常常见,例如室内温湿度监测、气象站等。
在现代生活中,对时间、温度和湿度的监测和显示具有重要的意义。无论是在家庭、办公室还是工业环境中,了解当前的时间和环境条件都是必要的。通过将这些信息实时显示在OLED屏幕上,我们可以方便地获取这些数据,从而更好地管理和调整我们的生活和工作。
在过去,通常需要使用多个独立的设备来获取这些信息,例如时钟、温度计和湿度计等。但是,通过本次实验,我们可以利用STM32微控制器的强大功能和OLED显示屏的高度可定制性,将这些功能集成到一个设备中。这样一来,我们不仅可以减少设备的数量和复杂度,还可以提高信息的集成度和可视性。
本次实验的应用背景和价值在于:

实时显示:通过使用STM32微控制器和OLED显示屏,我们可以实时显示当前的时间、温度和湿度,无需额外的设备或操作。
一体化设计:将时间、温度和湿度的功能集成到一个设备中,可以减少设备数量和占用空间,提高设备的整体美观性和易用性。
数据记录和分析:通过将温湿度数据记录到STM32的存储器中,我们可以进行后续的数据分析和处理,例如绘制温湿度曲线图或进行数据比较。
应用扩展:在基础的时间、温度和湿度显示功能上,我们还可以扩展其他功能,例如报警功能、历史数据查询等,以满足不同应用场景的需求。
总之,本次实验将带领我们实现一个功能强大且实用的应用,通过STM32微控制器和OLED显示屏,实时显示时间、温度和湿度。这个实验不仅有实际应用的价值,还可以帮助我们更深入地理解和掌握STM32的开发和应用。

1.温度传感器—AHT20
stm32嵌入式课设在板子上显示温湿度,日期和时间,stm32,嵌入式硬件,单片机stm32嵌入式课设在板子上显示温湿度,日期和时间,stm32,嵌入式硬件,单片机

以上表格为对AHT20温度传感器的介绍,AHT20是一种数字温湿度传感器,具有高精度测量、低功耗、快速响应时间等优点。它采用I2C接口进行通信,可直接连接到微控制器等设备。AHT20的温度测量范围为-40℃至+85℃,温度测量精度为±0.3℃。湿度测量范围为0%RH至100%RH,湿度测量精度为±2%RH。它的供电电压范围为2.1V至3.6V。AHT20广泛应用于温湿度监测和控制领域,例如室内环境监测、气象站、温湿度记录仪等。
stm32嵌入式课设在板子上显示温湿度,日期和时间,stm32,嵌入式硬件,单片机

stm32嵌入式课设在板子上显示温湿度,日期和时间,stm32,嵌入式硬件,单片机

以上表格为对SSD1306 OLED控制芯片的介绍。OLED是一种自发光显示技术,具有高对比度、快速响应、低功耗等优点。SSD1306是常用的OLED控制芯片,通过I2C或SPI接口与主控器连接。SSD1306支持多种分辨率配置和显示颜色,具有一些特殊功能如显示缓冲区、显示翻转、屏幕亮度调节等。OLED广泛应用于便携式设备、智能穿戴设备、电子产品、工业控制、车载显示等领域。
3.系统板—STM32F103C8T6stm32嵌入式课设在板子上显示温湿度,日期和时间,stm32,嵌入式硬件,单片机stm32嵌入式课设在板子上显示温湿度,日期和时间,stm32,嵌入式硬件,单片机

以上表格为对STM32F103C8T6微控制器的介绍。STM32F103C8T6属于STM32F1系列,它采用了ARM Cortex-M3内核,具有最高72MHz的工作频率。该芯片具有64KB的闪存和20KB的SRAM,并提供了丰富的外设资源,如通用定时器、PWM输出、多种通信接口等。它还拥有较多的GPIO引脚,提供了灵活的连接能力。STM32F103C8T6的供电电压范围为2.0V至3.6V,工作温度范围为-40℃至+85℃。由于其性能和价格的平衡,它被广泛应用于嵌入式系统、物联网、工业控制、自动化等领域。

4.功能的实现
4.1设计目标
本设计旨在利用STM32微控制器和OLED显示屏实现实时显示时间、温度和湿度的功能。通过集成这些功能于单一设备中,用户可以方便地获取环境信息并进行实时监测和调整。

4.2硬件设计
在硬件方面,我们将使用STM32F103C8T6微控制器作为主控制器,AHT20温湿度传感器用于测量环境温度和湿度,以及SSD1306 OLED显示屏用于显示时间、温度和湿度。这些硬件组件相互配合,实现了整体功能的实现。

4.3软件设计
在软件方面,我们将使用STM32CubeIDE进行开发。通过编写相应的代码,我们将实现以下功能:

初始化:初始化STM32微控制器、AHT20传感器和SSD1306 OLED显示屏,建立各个组件之间的通信连接。
读取数据:通过STM32微控制器读取AHT20传感器的温度和湿度数据。
时间获取:通过STM32内部时钟或外部时钟模块,获取当前的时间。
数据处理:对读取到的温度、湿度和时间数据进行处理,确保其准确性和可用性。
数据显示:将处理后的数据通过SSD1306 OLED显示屏进行显示,实现实时的时间、温度和湿度信息展示。
循环更新:通过循环结构,不断更新和刷新显示的数据,以保证数据的实时性。
通过以上硬件和软件设计,我们可以实现STM32-OLED显示时间+温度和湿度的功能。这个设计可以帮助用户方便地获取环境信息,并进行实时监测和调整。同时,这个设计也展示了STM32微控制器和OLED显示屏的强大功能和灵活性,为用户提供了一个实用且易于使用的解决方案。

5.代码的实现
5.1 AHT20的代码
参考
链接: https://blog.csdn.net/weixin_63019977/article/details/134266104
 

/*******************************************/
/*@????:??????????          */
/*@??:?????????                */
/*@??:V1.2                              */
/*******************************************/
//#include "main.h" 
#include "AHT20.h" 
#include "gpio.h"
#include "i2c.h"


void Delay_N10us(uint32_t t)//????
{
  uint32_t k;

   while(t--)
  {
    for (k = 0; k < 2; k++);//110
  }
}

void SensorDelay_us(uint32_t t)//????
{
		
	for(t = t-2; t>0; t--)
	{
		Delay_N10us(1);
	}
}

void Delay_4us(void)		//????
{	
	Delay_N10us(1);
	Delay_N10us(1);
	Delay_N10us(1);
	Delay_N10us(1);
}
void Delay_5us(void)		//????
{	
	Delay_N10us(1);
	Delay_N10us(1);
	Delay_N10us(1);
	Delay_N10us(1);
	Delay_N10us(1);

}

void Delay_1ms(uint32_t t)		//????
{
   while(t--)
  {
    SensorDelay_us(1000);//??1ms
  }
}


//void AHT20_Clock_Init(void)		//????
//{
//	RCC_APB2PeriphClockCmd(CC_APB2Periph_GPIOB,ENABLE);
//}

void SDA_Pin_Output_High(void)   //?PB7????? , ???????, PB7??I2C?SDA
{
	GPIO_InitTypeDef  GPIO_InitStruct;
	GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;//????
	GPIO_InitStruct.Pin = GPIO_PIN_7;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
	HAL_GPIO_Init(GPIOB,& GPIO_InitStruct);
	HAL_GPIO_WritePin(GPIOB,GPIO_PIN_7,GPIO_PIN_SET);
}

void SDA_Pin_Output_Low(void)  //?P7?????  ???????
{
	GPIO_InitTypeDef  GPIO_InitStruct;
	GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;//????
	GPIO_InitStruct.Pin = GPIO_PIN_7;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
	HAL_GPIO_Init(GPIOB,& GPIO_InitStruct);
	HAL_GPIO_WritePin(GPIOB,GPIO_PIN_7,GPIO_PIN_RESET);
}

void SDA_Pin_IN_FLOATING(void)  //SDA???????
{
	GPIO_InitTypeDef  GPIO_InitStruct;
	GPIO_InitStruct.Mode = GPIO_MODE_INPUT;//??
	GPIO_InitStruct.Pin = GPIO_PIN_7;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
	HAL_GPIO_Init( GPIOB,&GPIO_InitStruct);
}


void SCL_Pin_Output_High(void) //SCL?????,P14??I2C?SCL
{
	HAL_GPIO_WritePin(GPIOB,GPIO_PIN_6,GPIO_PIN_SET);
}

void SCL_Pin_Output_Low(void) //SCL?????
{
	HAL_GPIO_WritePin(GPIOB,GPIO_PIN_6,GPIO_PIN_RESET);
}

void Init_I2C_Sensor_Port(void) //???I2C??,??????
{	
	GPIO_InitTypeDef  GPIO_InitStruct;
	GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;//????
	GPIO_InitStruct.Pin = GPIO_PIN_7;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
	HAL_GPIO_Init(GPIOB,& GPIO_InitStruct);
	HAL_GPIO_WritePin(GPIOB,GPIO_PIN_15,GPIO_PIN_SET);

	
	GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;//????
	GPIO_InitStruct.Pin = GPIO_PIN_6;
	GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
	HAL_GPIO_Init(GPIOB,& GPIO_InitStruct);
	HAL_GPIO_WritePin(GPIOB,GPIO_PIN_15,GPIO_PIN_SET);
	
}
void I2C_Start(void)		 //I2C????START??
{
	SDA_Pin_Output_High();
	SensorDelay_us(8);
	SCL_Pin_Output_High();
	SensorDelay_us(8);
	SDA_Pin_Output_Low();
	SensorDelay_us(8);
	SCL_Pin_Output_Low();
	SensorDelay_us(8);   
}


void AHT20_WR_Byte(uint8_t Byte) //?AHT20?????
{
	uint8_t Data,N,i;	
	Data=Byte;
	i = 0x80;
	for(N=0;N<8;N++)
	{
		SCL_Pin_Output_Low(); 
		Delay_4us();	
		if(i&Data)
		{
			SDA_Pin_Output_High();
		}
		else
		{
			SDA_Pin_Output_Low();
		}	
			
    SCL_Pin_Output_High();
		Delay_4us();
		Data <<= 1;
		 
	}
	SCL_Pin_Output_Low();
	SensorDelay_us(8);   
	SDA_Pin_IN_FLOATING();
	SensorDelay_us(8);	
}	


uint8_t AHT20_RD_Byte(void)//?AHT20??????
{
		uint8_t Byte,i,a;
	Byte = 0;
	SCL_Pin_Output_Low();
	
	SDA_Pin_IN_FLOATING();
	SensorDelay_us(8);	
	
	for(i=0;i<8;i++)
	{
    SCL_Pin_Output_High();
		
		Delay_5us();
		a=0;
		
		//if(GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_15)) a=1;
		if(HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_7)) a=1;
		Byte = (Byte<<1)|a;
		
		//SCL_Pin_Output_Low();
		HAL_GPIO_WritePin(GPIOB,GPIO_PIN_6,GPIO_PIN_RESET);
		Delay_5us();
	}
  SDA_Pin_IN_FLOATING();
	SensorDelay_us(8);	
	return Byte;
}


uint8_t Receive_ACK(void)   //?AHT20?????ACK
{
	uint16_t CNT;
	CNT = 0;
	SCL_Pin_Output_Low();	
	SDA_Pin_IN_FLOATING();
	SensorDelay_us(8);	
	SCL_Pin_Output_High();	
	SensorDelay_us(8);	
	while((HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_7))  && CNT < 100) 
	CNT++;
	if(CNT == 100)
	{
		return 0;
	}
 	SCL_Pin_Output_Low();	
	SensorDelay_us(8);	
	return 1;
}

void Send_ACK(void)		  //????ACK??
{
	SCL_Pin_Output_Low();	
	SensorDelay_us(8);	
	SDA_Pin_Output_Low();
	SensorDelay_us(8);	
	SCL_Pin_Output_High();	
	SensorDelay_us(8);
	SCL_Pin_Output_Low();	
	SensorDelay_us(8);
	SDA_Pin_IN_FLOATING();
	SensorDelay_us(8);
}

void Send_NOT_ACK(void)	//?????ACK
{
	SCL_Pin_Output_Low();	
	SensorDelay_us(8);
	SDA_Pin_Output_High();
	SensorDelay_us(8);
	SCL_Pin_Output_High();	
	SensorDelay_us(8);		
	SCL_Pin_Output_Low();	
	SensorDelay_us(8);
    SDA_Pin_Output_Low();
	SensorDelay_us(8);
}

void Stop_I2C(void)	  //??????
{
	SDA_Pin_Output_Low();
	SensorDelay_us(8);
	SCL_Pin_Output_High();	
	SensorDelay_us(8);
	SDA_Pin_Output_High();
	SensorDelay_us(8);
}

uint8_t AHT20_Read_Status(void)//??AHT20??????
{

	uint8_t Byte_first;	
	I2C_Start();
	AHT20_WR_Byte(0x71);
	Receive_ACK();
	Byte_first = AHT20_RD_Byte();
	Send_NOT_ACK();
	Stop_I2C();
	return Byte_first;
}

uint8_t AHT20_Read_Cal_Enable(void)  //??cal enable??????
{
	uint8_t val = 0;//ret = 0,
  val = AHT20_Read_Status();
	 if((val & 0x68)==0x08)
		 return 1;
   else  return 0;
 }

void AHT20_SendAC(void) //?AHT20??AC??
{

	I2C_Start();
	AHT20_WR_Byte(0x70);
	Receive_ACK();
	AHT20_WR_Byte(0xac);//0xAC????
	Receive_ACK();
	AHT20_WR_Byte(0x33);
	Receive_ACK();
	AHT20_WR_Byte(0x00);
	Receive_ACK();
	Stop_I2C();

}

//CRC????:CRC8/MAXIM
//???:X8+X5+X4+1
//Poly:0011 0001  0x31
//????????? 1000 1100 0x8c
//C????:
uint8_t Calc_CRC8(uint8_t *message,uint8_t Num)
{
	uint8_t i;
	uint8_t byte;
	uint8_t crc=0xFF;
  for(byte=0; byte<Num; byte++)
  {
    crc^=(message[byte]);
    for(i=8;i>0;--i)
    {
      if(crc&0x80) crc=(crc<<1)^0x31;
      else crc=(crc<<1);
    }
  }
        return crc;
}

void AHT20_Read_CTdata(uint32_t *ct) //??CRC??,????AHT20????????
{
		volatile uint8_t  Byte_1th=0;
	volatile uint8_t  Byte_2th=0;
	volatile uint8_t  Byte_3th=0;
	volatile uint8_t  Byte_4th=0;
	volatile uint8_t  Byte_5th=0;
	volatile uint8_t  Byte_6th=0;
	 uint32_t RetuData = 0;
	uint16_t cnt = 0;
	AHT20_SendAC();//?AHT10??AC??
	Delay_1ms(80);//??80ms??	
    cnt = 0;
	while(((AHT20_Read_Status()&0x80)==0x80))//????bit[7]?0,???????,??1,?????
	{
		SensorDelay_us(1508);
		if(cnt++>=100)
		{
		 break;
		 }
	}
	I2C_Start();
	AHT20_WR_Byte(0x71);
	Receive_ACK();
	Byte_1th = AHT20_RD_Byte();//???,??????0x98,??????,bit[7]?1;???0x1C,??0x0C,??0x08???????,bit[7]?0
	Send_ACK();
	Byte_2th = AHT20_RD_Byte();//??
	Send_ACK();
	Byte_3th = AHT20_RD_Byte();//??
	Send_ACK();
	Byte_4th = AHT20_RD_Byte();//??/??
	Send_ACK();
	Byte_5th = AHT20_RD_Byte();//??
	Send_ACK();
	Byte_6th = AHT20_RD_Byte();//??
	Send_NOT_ACK();
	Stop_I2C();

	RetuData = (RetuData|Byte_2th)<<8;
	RetuData = (RetuData|Byte_3th)<<8;
	RetuData = (RetuData|Byte_4th);
	RetuData =RetuData >>4;
	ct[0] = RetuData;//??
	RetuData = 0;
	RetuData = (RetuData|Byte_4th)<<8;
	RetuData = (RetuData|Byte_5th)<<8;
	RetuData = (RetuData|Byte_6th);
	RetuData = RetuData&0xfffff;
	ct[1] =RetuData; //??

}


void AHT20_Read_CTdata_crc(uint32_t *ct) //CRC???,??AHT20????????
{
		volatile uint8_t  Byte_1th=0;
	volatile uint8_t  Byte_2th=0;
	volatile uint8_t  Byte_3th=0;
	volatile uint8_t  Byte_4th=0;
	volatile uint8_t  Byte_5th=0;
	volatile uint8_t  Byte_6th=0;
	volatile uint8_t  Byte_7th=0;
	 uint32_t RetuData = 0;
	 uint16_t cnt = 0;
	// uint8_t  CRCDATA=0;
	 uint8_t  CTDATA[6]={0};//??CRC????
	
	AHT20_SendAC();//?AHT10??AC??
	Delay_1ms(80);//??80ms??	
    cnt = 0;
	while(((AHT20_Read_Status()&0x80)==0x80))//????bit[7]?0,???????,??1,?????
	{
		SensorDelay_us(1508);
		if(cnt++>=100)
		{
		 break;
		}
	}
	
	I2C_Start();

	AHT20_WR_Byte(0x71);
	Receive_ACK();
	CTDATA[0]=Byte_1th = AHT20_RD_Byte();//???,??????0x98,??????,bit[7]?1;???0x1C,??0x0C,??0x08???????,bit[7]?0
	Send_ACK();
	CTDATA[1]=Byte_2th = AHT20_RD_Byte();//??
	Send_ACK();
	CTDATA[2]=Byte_3th = AHT20_RD_Byte();//??
	Send_ACK();
	CTDATA[3]=Byte_4th = AHT20_RD_Byte();//??/??
	Send_ACK();
	CTDATA[4]=Byte_5th = AHT20_RD_Byte();//??
	Send_ACK();
	CTDATA[5]=Byte_6th = AHT20_RD_Byte();//??
	Send_ACK();
	Byte_7th = AHT20_RD_Byte();//CRC??
	Send_NOT_ACK();                           //??: ?????NAK
	Stop_I2C();
	
	if(Calc_CRC8(CTDATA,6)==Byte_7th)
	{
	RetuData = (RetuData|Byte_2th)<<8;
	RetuData = (RetuData|Byte_3th)<<8;
	RetuData = (RetuData|Byte_4th);
	RetuData =RetuData >>4;
	ct[0] = RetuData;//??
	RetuData = 0;
	RetuData = (RetuData|Byte_4th)<<8;
	RetuData = (RetuData|Byte_5th)<<8;
	RetuData = (RetuData|Byte_6th);
	RetuData = RetuData&0xfffff;
	ct[1] =RetuData; //??
		
	}
	else
	{
		ct[0]=0x00;
		ct[1]=0x00;//???????,????????????
	}//CRC??
}


void AHT20_Init(void)   //???AHT20
{	
	Init_I2C_Sensor_Port();
	I2C_Start();
	AHT20_WR_Byte(0x70);
	Receive_ACK();
	AHT20_WR_Byte(0xa8);//0xA8??NOR????
	Receive_ACK();
	AHT20_WR_Byte(0x00);
	Receive_ACK();
	AHT20_WR_Byte(0x00);
	Receive_ACK();
	Stop_I2C();

	Delay_1ms(10);//??10ms??

	I2C_Start();
	AHT20_WR_Byte(0x70);
	Receive_ACK();
	AHT20_WR_Byte(0xbe);//0xBE?????,AHT20???????0xBE,   AHT10???????0xE1
	Receive_ACK();
	AHT20_WR_Byte(0x08);//?????bit[3]?1,?????
	Receive_ACK();
	AHT20_WR_Byte(0x00);
	Receive_ACK();
	Stop_I2C();
	Delay_1ms(10);//??10ms??
}
void JH_Reset_REG(uint8_t addr)
{
	
	uint8_t Byte_first,Byte_second,Byte_third;
	I2C_Start();
	AHT20_WR_Byte(0x70);//???0x70
	Receive_ACK();
	AHT20_WR_Byte(addr);
	Receive_ACK();
	AHT20_WR_Byte(0x00);
	Receive_ACK();
	AHT20_WR_Byte(0x00);
	Receive_ACK();
	Stop_I2C();

	Delay_1ms(5);//??5ms??
	I2C_Start();
	AHT20_WR_Byte(0x71);//
	Receive_ACK();
	Byte_first = AHT20_RD_Byte();
	Send_ACK();
	Byte_second = AHT20_RD_Byte();
	Send_ACK();
	Byte_third = AHT20_RD_Byte();
	Send_NOT_ACK();
	Stop_I2C();
	
  Delay_1ms(10);//??10ms??
	I2C_Start();
	AHT20_WR_Byte(0x70);///
	Receive_ACK();
	AHT20_WR_Byte(0xB0|addr);//?????
	Receive_ACK();
	AHT20_WR_Byte(Byte_second);
	Receive_ACK();
	AHT20_WR_Byte(Byte_third);
	Receive_ACK();
	Stop_I2C();
	
	Byte_second=0x00;
	Byte_third =0x00;
}

void AHT20_Start_Init(void)
{
	JH_Reset_REG(0x1b);
	JH_Reset_REG(0x1c);
	JH_Reset_REG(0x1e);
}

5.2 OLED的代码

参考链接: STM32进阶-OLED屏幕模块-CSDN博客
通过汉字取模软件,将所需要的汉字取模出来:stm32嵌入式课设在板子上显示温湿度,日期和时间,stm32,嵌入式硬件,单片机文章来源地址https://www.toymoban.com/news/detail-772853.html

        OLED_ShowHZ(1,2,18);//ÈÕ
		OLED_ShowHZ(1,4,20);//ÆÚ
		
		OLED_ShowNum(1,7,year,4);//2023
		OLED_ShowHZ(1,11,22);//Äê
		
		OLED_ShowNum(1,13,month,2);//11
		OLED_ShowHZ(1,15,24);//ÔÂ
		
		OLED_ShowNum(2,1,day,2);//20
		OLED_ShowHZ(2,3,26);//ÈÕ
		
		OLED_ShowNum(2,5,hour,2);//15
		OLED_ShowHZ(2,7,30);//ʱ
		
		OLED_ShowNum(2,9,min,2);//40
		OLED_ShowHZ(2,11,32);//·Ö
		
		OLED_ShowNum(2,13,s,2);//s
		OLED_ShowHZ(2,15,28);//Ãë
		
		//OLED_ShowString(2,17,"Mon");
		DHT11_REC_Data(); //½ÓÊÕdht11Êý¾Ý
	    OLED_ShowNum(3,10,rec_data[2]-5,2);
		OLED_ShowNum(4,10,rec_data[0]-13,2);
		s+=1;
		if(s>=60)
		{
			s=0;
			min++;
		}
		if(min>=60)
		{
			min=0;
			hour++;
		}
		if(hour>=24)
		{
			hour=0;
			day++;
		}
		if(day>=31)
		{
			month++;
			day=1;
		}
		if(month>12)
		{
			year++;
			month=1;
		}
		
		Delay_s(1);

6.实验效果

6.1编译6.2烧录7.总结 在本次实验中,我成功地利用STM32微控制器和OLED显示屏实现了实时显示时间、温度和湿度的功能。通过这个实验,我收获了以下几点心得和总结: 首先,这个实验让我更加深入地了解了STM32微控制器的使用和编程。通过使用Keil进行开发,我学会了如何初始化微控制器、配置外设和编写驱动程序。这为我今后在嵌入式领域的学习和开发奠定了坚实的基础。 其次,我对OLED显示屏的原理和操作也有了更深入的了解。通过与STM32微控制器的连接和编程,我成功地实现了数据的显示和刷新。这个实验让我意识到OLED显示屏在嵌入式系统中的广泛应用,以及其显示效果和灵活性的优势。 此外,通过与AHT20温湿度传感器的结合,我成功地获取到了环境温度和湿度的数据,并通过OLED显示屏进行了实时显示。这个实验让我认识到传感器在嵌入式系统中的重要性,以及如何通过读取传感器数据并进行处理和显示。 总的来说,这个实验不仅让我对STM32微控制器、OLED显示屏和温湿度传感器有了更深入的了解,还提升了我的嵌入式系统开发能力和编程技巧。我相信这些知识和经验将对我今后的学习和工作产生积极的影响。 通过这个实验,我也明确了自己在嵌入式领域的兴趣和发展方向。我将继续深入学习和探索STM32微控制器和相关技术,不断提升自己的能力,为嵌入式系统的开发和应用做出更多的贡献。  

到了这里,关于【嵌入式】STM32进阶-OLED显示时间+温度和湿度的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【嵌入式学习笔记】嵌入式基础9——STM32启动过程

    程序段交叉引用关系(Section Cross References):描述各文件之间函数调用关系 删除映像未使用的程序段(Removing Unused input sections from the image):描述工程中未用到被删除的冗余程序段(函数/数据) 映像符号表(Image Symbol Table):描述各符号(程序段/数据)在存储器中的地址、类

    2024年02月15日
    浏览(87)
  • stm32嵌入式实验考核

    STM32 实验考核题目 1. 利用 STM32 小板实现:控制外接 LED 灯每隔 3 秒钟亮暗变换,同 时在 PC 机上显示 MCU 的计时时间,MCU 的初始时间由 PC 机 方设置。 2. 利用 STM32 小板实现:利用导线外接 GPIO 口模拟 2 个按键输入, 根据输入组合的四种情况,分别控制三色灯四种流水灯效果

    2024年02月03日
    浏览(53)
  • 嵌入式 STM32 通讯协议--MODBUS

    目录 一、自定义通信协议 1、协议介绍 2、网络协议 3、自定义的通信协议  二、MODBUS通信协议 1、概述 2、MODBUS帧结构  协议描述 3、MODBUS数据模型   4、MODBUS事务处理的定义 5、MODBUS功能码  6、功能码定义   7、MODBUS数据链路层 8、MODBUS地址规则  9、MODBUS帧描述 10、MODBUS两种

    2024年02月11日
    浏览(66)
  • STM32的时钟系统(嵌入式学习)

    时钟是指用于计量和同步时间的装置或系统。时钟是嵌入式系统的脉搏,处理器内核在时钟驱动下完成指令执行,状态变换等动作,外设部件在时钟的驱动下完成各种工作,例如:串口数据的发送、AD转换、定时器计数等。因此时钟对于计算机系统是至关重要的,通常时钟系

    2024年02月16日
    浏览(50)
  • 嵌入式——新建STM32工程(标准库)

    目录 一、初识标准库 1.CMSIS标准及库层级关系 2.库文件介绍 (1)Libraries文件夹 ①CMSIS文件夹 ②STM32F10x_Std_Periph_Driver文件夹 ③ 在用库建立一个完整的工程时,还需要添加stm32f10x_it.c、 stm32f10x_conf.h 和 system_stm32f10x.c文件 (2)Project文件夹 (3)Utilities文件夹 3.库各文件之间的关

    2024年01月23日
    浏览(59)
  • STM32串口通信详解(嵌入式学习)

    时钟信号在电子领域中是指用于同步和定时电路操作的周期性信号。它在数字系统和通信系统中起着至关重要的作用,用于协调各个组件之间的数据传输和操作。 时钟信号有以下几个重要的方面: 频率:时钟信号的频率是指单位时间内信号周期的数量。它通常以赫兹(Hz)为

    2024年02月09日
    浏览(69)
  • 嵌入式项目分享 stm32智能运动计步系统 - 物联网 嵌入式 单片机

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月20日
    浏览(76)
  • 嵌入式学习笔记——STM32的时钟树

    在之前的所有代码编程的过程中,似乎每次都绕不开一个叫做时钟使能的东西,当时我们是在数据手册上直接看其挂接在那条时钟线上的,那么STM32内部的时钟到底是怎么一个构型呢,本文来对此做一个介绍。 老规矩,一个新的名词出现,首先需要搞清楚它是个啥,下图中对

    2024年02月02日
    浏览(58)
  • STM32的中断系统详解(嵌入式学习)

    中断是处理器中的一种机制,用于响应和处理突发事件或紧急事件。当发生中断时,当前正在执行的程序会被暂时中止,处理器会跳转到中断处理程序(也称为中断服务例程),对中断事件进行处理。处理完中断后,处理器再返回到被中断的程序继续执行。 中断可以分为内部

    2024年02月12日
    浏览(75)
  • 嵌入式C语言基础(STM32)

    前言:一条混迹嵌入式3年的老咸鱼,想到自己第一次接触到stm32的库函数时,c语言稀碎,痛不欲生的场景,该文章为萌新指条明路。 位操作在嵌入式中常用于直接对芯片的寄存器进行操作,当时作为初学者的我看着一脸懵逼,至于为什么这样修改,下面好好分析一下。  一

    2024年02月02日
    浏览(59)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包