【数据挖掘】模型融合

这篇具有很好参考价值的文章主要介绍了【数据挖掘】模型融合。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

模型融合是指将多个不同的机器学习模型组合起来,通过综合多个模型的预测结果来得到更准确的预测结果。模型融合可以提高模型的鲁棒性,减小模型的方差,提高模型的泛化能力。

常见的模型融合方法包括平均法、投票法和堆叠法。

  1. 平均法(Averaging):将多个模型的预测结果进行平均,可以是简单的算术平均或加权平均。平均法适用于模型预测结果的方差较小的情况。

  2. 投票法(Voting):根据多个模型的预测结果,统计出现频率最高的预测结果作为最终的预测结果。投票法适用于模型预测结果的方差较大的情况。有简单投票法,加权投票法,硬投票法。

  3. 堆叠法(stacking/blending):将多个模型的预测结果作为输入,训练一个新的模型来得到最终的预测结果。堆叠法可以将不同模型的优点结合起来,提高预测准确度。stacking是构建多层模型,并利用预测结果再做拟合预测;blending是选取部分数据预测训练得到预测结果作为新特征,带入剩下的数据中预测。blending只有一层,而stacking有多层。

  4. 综合法:有排序融合,log融合

  5. boosting/bagging:树分类的提升方法,在xgboost,Adaboost,GBDT中已经用到

在进行模型融合时,需要注意选择不同模型之间具有较低的相关性,避免多个模型预测结果的冗余。同时,还需要根据具体问题选择适当的模型融合方法。文章来源地址https://www.toymoban.com/news/detail-773074.html

到了这里,关于【数据挖掘】模型融合的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据挖掘与机器学习

    1. 有监督的机器学习 :         分类 :                  KNN 最近邻                  逻辑回归 - 朴素贝叶斯估计                  SVM 线性 或 非线性 优化模型                  决策树模型 - 随机森林 - 其它集成模型                  lig

    2024年04月29日
    浏览(110)
  • 数据挖掘实践(金融风控):金融风控之贷款违约预测挑战赛(上篇)[xgboots/lightgbm/Catboost等模型]--模型融合:stacking、blending

    赛题以金融风控中的个人信贷为背景,要求选手根据贷款申请人的数据信息预测其是否有违约的可能,以此判断是否通过此项贷款,这是一个典型的分类问题。通过这道赛题来引导大家了解金融风控中的一些业务背景,解决实际问题,帮助竞赛新人进行自我练习、自我提高。

    2024年02月05日
    浏览(45)
  • Python数据挖掘与机器学习

    近年来,Python编程语言受到越来越多科研人员的喜爱,在多个编程语言排行榜中持续夺冠。同时,伴随着深度学习的快速发展,人工智能技术在各个领域中的应用越来越广泛。机器学习是人工智能的基础,因此,掌握常用机器学习算法的工作原理,并能够熟练运用Python建立实

    2024年02月11日
    浏览(57)
  • 【Python】数据挖掘与机器学习(一)

    大家好 我是寸铁👊 总结了一篇【Python】数据挖掘与机器学习(一)sparkles: 喜欢的小伙伴可以点点关注 💝 问题描述 请从一份数据中预测鲍鱼的年龄,数据集在abalone.cvs中,数据集一共有4177 个样本,每个样本有9个特征。其中rings为鲍鱼环数,鲍鱼每一年长一环,类似树轮,是

    2024年04月12日
    浏览(53)
  • ElasticSearch的数据挖掘与机器学习

    ElasticSearch是一个开源的搜索和分析引擎,它基于Lucene库构建,具有高性能、易用性和扩展性。ElasticSearch可以用于实时搜索、数据分析和机器学习等应用场景。本文将涵盖ElasticSearch的数据挖掘与机器学习方面的核心概念、算法原理、最佳实践以及实际应用场景。 在ElasticSear

    2024年02月22日
    浏览(57)
  • 机器学习——数据仓库与数据挖掘——期末复习(简答题)

    1 、试述真正例率(TPR)、假正例率(FPR)与查准率(P)、查全率(R)之间的联系。 查全率: 真实正例被预测为正例的比例 真正例率: 真实正例被预测为正例的比例 查全率与真正例率是相等的。 查准率:预测为正例的实例中真实正例的比例 假正例率: 真实反例被预测为正例的

    2024年02月10日
    浏览(63)
  • Python 数据挖掘与机器学习教程

    详情点击链接:Python 数据挖掘与机器学习 一: Python编程 Python编程入门 1、Python环境搭建( 下载、安装与版本选择)。 2、如何选择Python编辑器?(IDLE、Notepad++、PyCharm、Jupyter…) 3、Python基础(数据类型和变量、字符串和编码、list和tuple、条件判断、循环、函数的定义与调

    2024年02月16日
    浏览(57)
  • 机器学习和数据挖掘01- lasso regularization

    Lasso正则化是一种线性回归中的正则化技术,旨在减少模型的复杂性并防止过拟合。Lasso(Least Absolute Shrinkage and Selection Operator)通过在损失函数中添加正则项,促使模型的系数变得稀疏,即某些系数会被压缩到零,从而实现特征选择。 在Lasso正则化中,我们引入了一个惩罚项

    2024年02月09日
    浏览(52)
  • 机器学习——数据仓库与数据挖掘复习(选择题、判断题)

    1. 以下不是分类问题的是(  B )。 A. 用户流失模型 B. 身高和体重关系 C. 信用评分 D. 营销响应 2. 对于回归分析,下列说法错误的是( D ) A. 在回归分析中,变量间的关系若是非确定关系,那么因变量不能由自变量唯一确定 B. 线性相关系数可以是正的,也可以是负的 C. 回归

    2024年02月06日
    浏览(59)
  • 机器学习和数据挖掘04-PowerTransformer与 MinMaxScaler

    PowerTransformer 是用于对数据进行幂变换(也称为Box-Cox变换)的预处理工具。幂变换可以使数据更接近正态分布,这有助于某些机器学习算法的性能提升。它支持两种常用的幂变换:Yeo-Johnson变换和Box-Cox变换。 MinMaxScaler 是用于将数据进行最小-最大缩放的预处理工具。它将数据

    2024年02月10日
    浏览(55)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包