目前仅完成tlsf算法的移植,算法修改等待后续完成(OOAD去了)
一、实验目的
1、理解TLSF算法,并根据实验要求改进分配算法
二、实验环境
1.物理机:windows操作系统
2.VMware虚拟机:ubuntu 18.04.6
3.开发板:imx6ull Mini
三、实验内容
实验问题:LiteOS中的物理内存分配采用了TLSF算法,该算法较好地解决了最坏情况执行时间不确定(not bounded)或者复杂度过高(bounded with a too important bound"),以及碎片化问题(fragmentation)两个问题。
TLSF算法仍存在优化空间,Best-fit策略最主要的问题还在于第三步,仍然需要检索对应范围的那一条空闲块链表,存在潜在的时间复杂度。Good-fit思路与Best-fit不同之处在于,Good-fit并不保证找到满足需求的最小空闲块,而是尽可能接近要分配的大小。
以搜索大小为69字节的空闲块为例,Good-fit并不是找到[68 ~ 70]这一范围,而是比这个范围稍微大一点儿的范围(例如[71 ~ 73])。这样设计的好处就是[71 ~ 73]对应的空闲块链中每一块都能满足需求,不需要检索空闲块链表找到最小的,而是直接取空闲块链中第一块即可。整体上还不会造成太多碎片。
Good-fit分配策略将动态内存的分配与回收时间复杂度都降到了O(1)时间复杂度,并且保证系统运行时不会产生过多碎片。
1、移植TLSF
我们实验使用的鸿蒙LiteOS的1.0版本很不幸并没有实现TLSF,但是通过查阅鸿蒙的历史发行版本可以发现在随后1.1.0版本中就支持了TLSF内存分配
可以从对应网站上下载1.1.0版本的内核代码进行移植操作(这里从官网下载只是为了说明代码来源,在复现实验时直接使用附录里的修改后的tlsf代码即可,没必要去下载)
找到对应的文件tlsf文件,直接将其上传到虚拟机内核代码的相应位置
如果直接使用附录里的文件只需要直接新建一个空白.c文件之后将附录里代码拷贝进去即可,而不用从官网上下载再上传到该位置
在Makefile和BUILD.gn中增加新的文件目录,使得在编译的时候可以被扫描到
这个时候编译会报错,主要原因新旧版本有一些不兼容,比如变量名有改变等,需要手动进行修改(修改后的文件就是附录中的文件,建议直接使用),完成后应该可以进行编译了
2、增加系统调用
增加的TLSF部分代码没法直接在应用程序中调用,因为应用程序的交叉编译、链接是通过静态库来完成的,虽然修改了内核代码但是静态库没有发生改变,需要重新编译静态库,但是鸿蒙1.0版本没提供对应的编译工具,在1.1.0中才提供工具,还需要经过一大堆修改才能使用,过程非常麻烦,为了方便直接使用系统调用来使用这部分的代码。
加系统调用和实验一相同先在openharmony/prebuilts/lite/sysroot/usr/include/arm-liteos/bits/syscall.h中定义了内核态和用户态使用的系统调用号,在里面加入新的SYS_malloc和__NR_malloc
在openharmony/third_party/musl/kernel/obj/include/bits/syscall.h中添加系统调用号
在openharmony/kernel/liteos_a/syscall/los_syscall.h中添加系统调用处理函数的声明
在syscall目录下新建一个sys_malloc.c用于存放函数的实现
之后建立处理函数和系统调用号的映射关系
为了保险起见直接将原先使用bestfit的los_memory.c全局注释掉
在tlfs的内存分配函数这里加一行输出,用于判断是否执行了该部分代码
编译内核之后烧写,可以看到输出了很多井号,证明确实执行了该部分代码,不过没有shell没有起来,后来经过判断是因为这行打印代码的问题
去掉打印代码,编写一个用户态程序用于判断是否可以正确被调用
交叉编译再运行应用程序,可以看到输出了一个地址,初步判断应该是移植成功了,即实现了把tlsf算法移植到了1.0版本里文章来源:https://www.toymoban.com/news/detail-773289.html
文章来源地址https://www.toymoban.com/news/detail-773289.html
四、实验结果
五、实验分析
六、实验总结
七、参考资料
八、附录
//openharmony/kernel/liteos_a/kernel/base/mem/tlsf/los_memory.c
/*
* Copyright (c) 2013-2019 Huawei Technologies Co., Ltd. All rights reserved.
* Copyright (c) 2020-2021 Huawei Device Co., Ltd. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "los_memory.h"
#include "los_memory_pri.h"
#include "sys/param.h"
#include "los_spinlock.h"
#include "los_vm_phys.h"
#include "los_vm_boot.h"
#include "los_vm_filemap.h"
#include "los_task_pri.h"
#define MEM_EXPAND_SIZE(poolSize) (poolSize >> 3)
#undef LOSCFG_KERNEL_TRACE
// #ifdef LOSCFG_KERNEL_TRACE
// #include "los_trace_frame.h"
// #include "los_trace.h"
// #endif
#ifdef __cplusplus
#if __cplusplus
extern "C" {
#endif /* __cplusplus */
#endif /* __cplusplus */
/* Used to cut non-essential functions. */
#define OS_MEM_FREE_BY_TASKID 0
#define OS_MEM_EXPAND_ENABLE 1
/* the dump size of current broken node when memcheck error */
#define OS_MEM_NODE_DUMP_SIZE 64
/* column num of the output info of mem node */
#define OS_MEM_COLUMN_NUM 8
UINT8 *m_aucSysMem0 = NULL;
UINT8 *m_aucSysMem1 = NULL;
#ifdef LOSCFG_MEM_MUL_POOL
VOID *g_poolHead = NULL;
#endif
/* The following is the macro definition and interface implementation related to the TLSF. */
/* Supposing a Second Level Index: SLI = 3. */
#define OS_MEM_SLI 3
/* Giving 1 free list for each small bucket: 4, 8, 12, up to 124. */
#define OS_MEM_SMALL_BUCKET_COUNT 31
#define OS_MEM_SMALL_BUCKET_MAX_SIZE 128
/* Giving OS_MEM_FREE_LIST_NUM free lists for each large bucket. */
#define OS_MEM_LARGE_BUCKET_COUNT 24
#define OS_MEM_FREE_LIST_NUM (1 << OS_MEM_SLI)
/* OS_MEM_SMALL_BUCKET_MAX_SIZE to the power of 2 is 7. */
#define OS_MEM_LARGE_START_BUCKET 7
/* The count of free list. */
#define OS_MEM_FREE_LIST_COUNT (OS_MEM_SMALL_BUCKET_COUNT + (OS_MEM_LARGE_BUCKET_COUNT << OS_MEM_SLI))
/* The bitmap is used to indicate whether the free list is empty, 1: not empty, 0: empty. */
#define OS_MEM_BITMAP_WORDS ((OS_MEM_FREE_LIST_COUNT >> 5) + 1)
#define OS_MEM_BITMAP_MASK 0x1FU
/* Used to find the first bit of 1 in bitmap. */
STATIC INLINE UINT16 OsMemFFS(UINT32 bitmap)
{
bitmap &= ~bitmap + 1;
return (OS_MEM_BITMAP_MASK - CLZ(bitmap));
}
/* Used to find the last bit of 1 in bitmap. */
STATIC INLINE UINT16 OsMemFLS(UINT32 bitmap)
{
return (OS_MEM_BITMAP_MASK - CLZ(bitmap));
}
STATIC INLINE UINT32 OsMemLog2(UINT32 size)
{
return OsMemFLS(size);
}
/* Get the first level: f = log2(size). */
STATIC INLINE UINT32 OsMemFlGet(UINT32 size)
{
if (size < OS_MEM_SMALL_BUCKET_MAX_SIZE) {
return ((size >> 2) - 1); /* 2: The small bucket setup is 4. */
}
return OsMemLog2(size);
}
/* Get the second level: s = (size - 2^f) * 2^SLI / 2^f. */
STATIC INLINE UINT32 OsMemSlGet(UINT32 size, UINT32 fl)
{
return (((size << OS_MEM_SLI) >> fl) - OS_MEM_FREE_LIST_NUM);
}
/* The following is the memory algorithm related macro definition and interface implementation. */
struct OsMemNodeHead {
UINT32 magic;
union {
struct OsMemNodeHead *prev; /* The prev is used for current node points to the previous node */
struct OsMemNodeHead *next; /* The next is used for last node points to the expand node */
} ptr;
#ifdef LOSCFG_MEM_LEAKCHECK
UINTPTR linkReg[LOS_RECORD_LR_CNT];
#endif
UINT32 sizeAndFlag;
};
struct OsMemUsedNodeHead {
struct OsMemNodeHead header;
#if OS_MEM_FREE_BY_TASKID
UINT32 taskID;
#endif
};
struct OsMemFreeNodeHead {
struct OsMemNodeHead header;
struct OsMemFreeNodeHead *prev;
struct OsMemFreeNodeHead *next;
};
struct OsMemPoolInfo {
VOID *pool;
UINT32 totalSize;
UINT32 attr;
#if defined(OS_MEM_WATERLINE) && (OS_MEM_WATERLINE == YES)
UINT32 waterLine; /* Maximum usage size in a memory pool */
UINT32 curUsedSize; /* Current usage size in a memory pool */
#endif
};
struct OsMemPoolHead {
struct OsMemPoolInfo info;
UINT32 freeListBitmap[OS_MEM_BITMAP_WORDS];
struct OsMemFreeNodeHead *freeList[OS_MEM_FREE_LIST_COUNT];
SPIN_LOCK_S spinlock;
#ifdef LOSCFG_MEM_MUL_POOL
VOID *nextPool;
#endif
};
/* Spinlock for mem module, only available on SMP mode */
#define _MEM_LOCK(pool, state) LOS_SpinLockSave(&(pool)->spinlock, &(state))
#define _MEM_UNLOCK(pool, state) LOS_SpinUnlockRestore(&(pool)->spinlock, (state))
/* The memory pool support expand. */
#define OS_MEM_POOL_EXPAND_ENABLE 0x01
/* The memory pool ssupport no lock. */
#define OS_MEM_POOL_LOCK_ENABLE 0x02
#define OS_MEM_NODE_MAGIC 0xABCDDCBA
#define OS_MEM_MIN_ALLOC_SIZE (sizeof(struct OsMemFreeNodeHead) - sizeof(struct OsMemUsedNodeHead))
#define OS_MEM_NODE_USED_FLAG 0x80000000U
#define OS_MEM_NODE_ALIGNED_FLAG 0x40000000U
#define OS_MEM_NODE_LAST_FLAG 0x20000000U /* Sentinel Node */
#define OS_MEM_NODE_ALIGNED_AND_USED_FLAG (OS_MEM_NODE_USED_FLAG | OS_MEM_NODE_ALIGNED_FLAG | OS_MEM_NODE_LAST_FLAG)
#define OS_MEM_NODE_GET_ALIGNED_FLAG(sizeAndFlag) \
((sizeAndFlag) & OS_MEM_NODE_ALIGNED_FLAG)
#define OS_MEM_NODE_SET_ALIGNED_FLAG(sizeAndFlag) \
((sizeAndFlag) = ((sizeAndFlag) | OS_MEM_NODE_ALIGNED_FLAG))
#define OS_MEM_NODE_GET_ALIGNED_GAPSIZE(sizeAndFlag) \
((sizeAndFlag) & ~OS_MEM_NODE_ALIGNED_FLAG)
#define OS_MEM_NODE_GET_USED_FLAG(sizeAndFlag) \
((sizeAndFlag) & OS_MEM_NODE_USED_FLAG)
#define OS_MEM_NODE_SET_USED_FLAG(sizeAndFlag) \
((sizeAndFlag) = ((sizeAndFlag) | OS_MEM_NODE_USED_FLAG))
#define OS_MEM_NODE_GET_SIZE(sizeAndFlag) \
((sizeAndFlag) & ~OS_MEM_NODE_ALIGNED_AND_USED_FLAG)
#define OS_MEM_NODE_SET_LAST_FLAG(sizeAndFlag) \
((sizeAndFlag) = ((sizeAndFlag) | OS_MEM_NODE_LAST_FLAG))
#define OS_MEM_NODE_GET_LAST_FLAG(sizeAndFlag) \
((sizeAndFlag) & OS_MEM_NODE_LAST_FLAG)
#define OS_MEM_ALIGN_SIZE sizeof(UINTPTR)
#define OS_MEM_IS_POW_TWO(value) ((((UINTPTR)(value)) & ((UINTPTR)(value) - 1)) == 0)
#define OS_MEM_ALIGN(p, alignSize) (((UINTPTR)(p) + (alignSize) - 1) & ~((UINTPTR)((alignSize) - 1)))
#define OS_MEM_IS_ALIGNED(a, b) (!(((UINTPTR)(a)) & (((UINTPTR)(b)) - 1)))
#define OS_MEM_NODE_HEAD_SIZE sizeof(struct OsMemUsedNodeHead)
#define OS_MEM_MIN_POOL_SIZE (OS_MEM_NODE_HEAD_SIZE + sizeof(struct OsMemPoolHead))
#define OS_MEM_NEXT_NODE(node) \
((struct OsMemNodeHead *)(VOID *)((UINT8 *)(node) + OS_MEM_NODE_GET_SIZE((node)->sizeAndFlag)))
#define OS_MEM_FIRST_NODE(pool) \
(struct OsMemNodeHead *)((UINT8 *)(pool) + sizeof(struct OsMemPoolHead))
#define OS_MEM_END_NODE(pool, size) \
(struct OsMemNodeHead *)((UINT8 *)(pool) + (size) - OS_MEM_NODE_HEAD_SIZE)
#define OS_MEM_MIDDLE_ADDR_OPEN_END(startAddr, middleAddr, endAddr) \
(((UINT8 *)(startAddr) <= (UINT8 *)(middleAddr)) && ((UINT8 *)(middleAddr) < (UINT8 *)(endAddr)))
#define OS_MEM_MIDDLE_ADDR(startAddr, middleAddr, endAddr) \
(((UINT8 *)(startAddr) <= (UINT8 *)(middleAddr)) && ((UINT8 *)(middleAddr) <= (UINT8 *)(endAddr)))
#define OS_MEM_SET_MAGIC(node) ((node)->magic = OS_MEM_NODE_MAGIC)
#define OS_MEM_MAGIC_VALID(node) ((node)->magic == OS_MEM_NODE_MAGIC)
STATIC INLINE VOID OsMemFreeNodeAdd(VOID *pool, struct OsMemFreeNodeHead *node);
STATIC INLINE UINT32 OsMemFree(struct OsMemPoolHead *pool, struct OsMemNodeHead *node);
STATIC VOID OsMemInfoPrint(VOID *pool);
#ifdef LOSCFG_BASE_MEM_NODE_INTEGRITY_CHECK
STATIC INLINE UINT32 OsMemAllocCheck(struct OsMemPoolHead *pool, UINT32 intSave);
#endif
#if OS_MEM_FREE_BY_TASKID
STATIC INLINE VOID OsMemNodeSetTaskID(struct OsMemUsedNodeHead *node)
{
node->taskID = LOS_CurTaskIDGet();
}
#endif
#if defined(OS_MEM_WATERLINE) && (OS_MEM_WATERLINE == YES)
STATIC INLINE VOID OsMemWaterUsedRecord(struct OsMemPoolHead *pool, UINT32 size)
{
pool->info.curUsedSize += size;
if (pool->info.curUsedSize > pool->info.waterLine) {
pool->info.waterLine = pool->info.curUsedSize;
}
}
#else
STATIC INLINE VOID OsMemWaterUsedRecord(struct OsMemPoolHead *pool, UINT32 size)
{
(VOID)pool;
(VOID)size;
}
#endif
#if OS_MEM_EXPAND_ENABLE
STATIC INLINE struct OsMemNodeHead *OsMemLastSentinelNodeGet(const struct OsMemNodeHead *sentinelNode)
{
struct OsMemNodeHead *node = NULL;
VOID *ptr = sentinelNode->ptr.next;
UINT32 size = OS_MEM_NODE_GET_SIZE(sentinelNode->sizeAndFlag);
while ((ptr != NULL) && (size != 0)) {
node = OS_MEM_END_NODE(ptr, size);
ptr = node->ptr.next;
size = OS_MEM_NODE_GET_SIZE(node->sizeAndFlag);
}
return node;
}
STATIC INLINE BOOL OsMemSentinelNodeCheck(struct OsMemNodeHead *sentinelNode)
{
if (!OS_MEM_NODE_GET_USED_FLAG(sentinelNode->sizeAndFlag)) {
return FALSE;
}
if (!OS_MEM_MAGIC_VALID(sentinelNode)) {
return FALSE;
}
return TRUE;
}
STATIC INLINE BOOL OsMemIsLastSentinelNode(struct OsMemNodeHead *sentinelNode)
{
if (OsMemSentinelNodeCheck(sentinelNode) == FALSE) {
PRINT_ERR("%s %d, The current sentinel node is invalid\n", __FUNCTION__, __LINE__);
return TRUE;
}
if ((OS_MEM_NODE_GET_SIZE(sentinelNode->sizeAndFlag) == 0) ||
(sentinelNode->ptr.next == NULL)) {
return TRUE;
}
return FALSE;
}
STATIC INLINE VOID OsMemSentinelNodeSet(struct OsMemNodeHead *sentinelNode, VOID *newNode, UINT32 size)
{
if (sentinelNode->ptr.next != NULL) {
sentinelNode = OsMemLastSentinelNodeGet(sentinelNode);
}
sentinelNode->sizeAndFlag = size;
sentinelNode->ptr.next = newNode;
OS_MEM_NODE_SET_USED_FLAG(sentinelNode->sizeAndFlag);
OS_MEM_NODE_SET_LAST_FLAG(sentinelNode->sizeAndFlag);
}
STATIC INLINE VOID *OsMemSentinelNodeGet(struct OsMemNodeHead *node)
{
return node->ptr.next;
}
STATIC INLINE struct OsMemNodeHead *PreSentinelNodeGet(const VOID *pool, const struct OsMemNodeHead *node)
{
UINT32 nextSize;
struct OsMemNodeHead *nextNode = NULL;
struct OsMemNodeHead *sentinelNode = NULL;
sentinelNode = OS_MEM_END_NODE(pool, ((struct OsMemPoolHead *)pool)->info.totalSize);
while (sentinelNode != NULL) {
if (OsMemIsLastSentinelNode(sentinelNode)) {
PRINT_ERR("PreSentinelNodeGet can not find node %#x\n", node);
return NULL;
}
nextNode = OsMemSentinelNodeGet(sentinelNode);
if (nextNode == node) {
return sentinelNode;
}
nextSize = OS_MEM_NODE_GET_SIZE(sentinelNode->sizeAndFlag);
sentinelNode = OS_MEM_END_NODE(nextNode, nextSize);
}
return NULL;
}
STATIC INLINE BOOL TryShrinkPool(const VOID *pool, const struct OsMemNodeHead *node)
{
struct OsMemNodeHead *mySentinel = NULL;
struct OsMemNodeHead *preSentinel = NULL;
size_t totalSize = (UINTPTR)node->ptr.prev - (UINTPTR)node;
size_t nodeSize = OS_MEM_NODE_GET_SIZE(node->sizeAndFlag);
if (nodeSize != totalSize) {
return FALSE;
}
preSentinel = PreSentinelNodeGet(pool, node);
if (preSentinel == NULL) {
return FALSE;
}
mySentinel = node->ptr.prev;
if (OsMemIsLastSentinelNode(mySentinel)) { /* prev node becomes sentinel node */
preSentinel->ptr.next = NULL;
OsMemSentinelNodeSet(preSentinel, NULL, 0);
} else {
preSentinel->sizeAndFlag = mySentinel->sizeAndFlag;
preSentinel->ptr.next = mySentinel->ptr.next;
}
if (OsMemLargeNodeFree(node) != LOS_OK) {
PRINT_ERR("TryShrinkPool free %#x failed!\n", node);
return FALSE;
}
return TRUE;
}
STATIC INLINE INT32 OsMemPoolExpandSub(VOID *pool, UINT32 size, UINT32 intSave)
{
UINT32 tryCount = MAX_SHRINK_PAGECACHE_TRY;
struct OsMemPoolHead *poolInfo = (struct OsMemPoolHead *)pool;
struct OsMemNodeHead *newNode = NULL;
struct OsMemNodeHead *endNode = NULL;
size = ROUNDUP(size + OS_MEM_NODE_HEAD_SIZE, PAGE_SIZE);
endNode = OS_MEM_END_NODE(pool, poolInfo->info.totalSize);
RETRY:
newNode = (struct OsMemNodeHead *)LOS_PhysPagesAllocContiguous(size >> PAGE_SHIFT);
if (newNode == NULL) {
if (tryCount > 0) {
tryCount--;
_MEM_UNLOCK(poolInfo, intSave);
OsTryShrinkMemory(size >> PAGE_SHIFT);
_MEM_LOCK(poolInfo, intSave);
goto RETRY;
}
PRINT_ERR("OsMemPoolExpand alloc failed size = %u\n", size);
return -1;
}
newNode->sizeAndFlag = (size - OS_MEM_NODE_HEAD_SIZE);
newNode->ptr.prev = OS_MEM_END_NODE(newNode, size);
OsMemSentinelNodeSet(endNode, newNode, size);
OsMemFreeNodeAdd(pool, (struct OsMemFreeNodeHead *)newNode);
endNode = OS_MEM_END_NODE(newNode, size);
(VOID)memset_s(endNode, sizeof(*endNode), 0, sizeof(*endNode));
endNode->ptr.next = NULL;
endNode->magic = OS_MEM_NODE_MAGIC;
OsMemSentinelNodeSet(endNode, NULL, 0);
OsMemWaterUsedRecord(poolInfo, OS_MEM_NODE_HEAD_SIZE);
return 0;
}
STATIC INLINE INT32 OsMemPoolExpand(VOID *pool, UINT32 allocSize, UINT32 intSave)
{
UINT32 expandDefault = MEM_EXPAND_SIZE(LOS_MemPoolSizeGet(pool));
UINT32 expandSize = MAX(expandDefault, allocSize);
UINT32 tryCount = 1;
UINT32 ret;
do {
ret = OsMemPoolExpandSub(pool, expandSize, intSave);
if (ret == 0) {
return 0;
}
if (allocSize > expandDefault) {
break;
}
expandSize = allocSize;
} while (tryCount--);
return -1;
}
VOID LOS_MemExpandEnable(VOID *pool)
{
if (pool == NULL) {
return;
}
((struct OsMemPoolHead *)pool)->info.attr |= OS_MEM_POOL_EXPAND_ENABLE;
}
#endif
#ifdef LOSCFG_MEM_LEAKCHECK
STATIC INLINE VOID OsMemLinkRegisterRecord(struct OsMemNodeHead *node)
{
LOS_RecordLR(node->linkReg, LOS_RECORD_LR_CNT, LOS_RECORD_LR_CNT, LOS_OMIT_LR_CNT);
}
STATIC INLINE VOID OsMemUsedNodePrint(struct OsMemNodeHead *node)
{
UINT32 count;
if (OS_MEM_NODE_GET_USED_FLAG(node->sizeAndFlag)) {
#ifdef __LP64__
PRINTK("0x%018x: ", node);
#else
PRINTK("0x%010x: ", node);
#endif
for (count = 0; count < LOS_RECORD_LR_CNT; count++) {
#ifdef __LP64__
PRINTK(" 0x%018x ", node->linkReg[count]);
#else
PRINTK(" 0x%010x ", node->linkReg[count]);
#endif
}
PRINTK("\n");
}
}
VOID OsMemUsedNodeShow(VOID *pool)
{
if (pool == NULL) {
PRINTK("input param is NULL\n");
return;
}
if (LOS_MemIntegrityCheck(pool)) {
PRINTK("LOS_MemIntegrityCheck error\n");
return;
}
struct OsMemPoolHead *poolInfo = (struct OsMemPoolHead *)pool;
struct OsMemNodeHead *tmpNode = NULL;
struct OsMemNodeHead *endNode = NULL;
UINT32 size;
UINT32 intSave;
UINT32 count;
#ifdef __LP64__
PRINTK("\n\rnode ");
#else
PRINTK("\n\rnode ");
#endif
for (count = 0; count < LOS_RECORD_LR_CNT; count++) {
#ifdef __LP64__
PRINTK(" LR[%u] ", count);
#else
PRINTK(" LR[%u] ", count);
#endif
}
PRINTK("\n");
_MEM_LOCK(poolInfo, intSave);
endNode = OS_MEM_END_NODE(pool, poolInfo->info.totalSize);
#if OS_MEM_EXPAND_ENABLE
for (tmpNode = OS_MEM_FIRST_NODE(pool); tmpNode <= endNode;
tmpNode = OS_MEM_NEXT_NODE(tmpNode)) {
if (tmpNode == endNode) {
if (OsMemIsLastSentinelNode(endNode) == FALSE) {
size = OS_MEM_NODE_GET_SIZE(endNode->sizeAndFlag);
tmpNode = OsMemSentinelNodeGet(endNode);
endNode = OS_MEM_END_NODE(tmpNode, size);
continue;
} else {
break;
}
} else {
OsMemUsedNodePrint(tmpNode);
}
}
#else
for (tmpNode = OS_MEM_FIRST_NODE(pool); tmpNode < endNode;
tmpNode = OS_MEM_NEXT_NODE(tmpNode)) {
OsMemUsedNodePrint(tmpNode);
}
#endif
_MEM_UNLOCK(poolInfo, intSave);
}
STATIC VOID OsMemNodeBacktraceInfo(const struct OsMemNodeHead *tmpNode,
const struct OsMemNodeHead *preNode)
{
int i;
PRINTK("\n broken node head LR info: \n");
for (i = 0; i < LOS_RECORD_LR_CNT; i++) {
PRINTK(" LR[%d]:%#x\n", i, tmpNode->linkReg[i]);
}
PRINTK("\n pre node head LR info: \n");
for (i = 0; i < LOS_RECORD_LR_CNT; i++) {
PRINTK(" LR[%d]:%#x\n", i, preNode->linkReg[i]);
}
}
#endif
STATIC INLINE UINT32 OsMemFreeListIndexGet(UINT32 size)
{
UINT32 fl = OsMemFlGet(size);
if (size < OS_MEM_SMALL_BUCKET_MAX_SIZE) {
return fl;
}
UINT32 sl = OsMemSlGet(size, fl);
return (OS_MEM_SMALL_BUCKET_COUNT + ((fl - OS_MEM_LARGE_START_BUCKET) << OS_MEM_SLI) + sl);
}
STATIC INLINE struct OsMemFreeNodeHead *OsMemFindCurSuitableBlock(struct OsMemPoolHead *poolHead,
UINT32 index, UINT32 size)
{
struct OsMemFreeNodeHead *node = NULL;
for (node = poolHead->freeList[index]; node != NULL; node = node->next) {
if (node->header.sizeAndFlag >= size) {
return node;
}
}
return NULL;
}
STATIC INLINE UINT32 OsMemNotEmptyIndexGet(struct OsMemPoolHead *poolHead, UINT32 index)
{
UINT32 mask = poolHead->freeListBitmap[index >> 5]; /* 5: Divide by 32 to calculate the index of the bitmap array. */
mask &= ~((1 << (index & OS_MEM_BITMAP_MASK)) - 1);
if (mask != 0) {
index = OsMemFFS(mask) + (index & ~OS_MEM_BITMAP_MASK);
return index;
}
return OS_MEM_FREE_LIST_COUNT;
}
STATIC INLINE struct OsMemFreeNodeHead *OsMemFindNextSuitableBlock(VOID *pool, UINT32 size, UINT32 *outIndex)
{
struct OsMemPoolHead *poolHead = (struct OsMemPoolHead *)pool;
UINT32 fl = OsMemFlGet(size);
UINT32 sl;
UINT32 index, tmp;
UINT32 curIndex = OS_MEM_FREE_LIST_COUNT;
UINT32 mask;
do {
if (size < OS_MEM_SMALL_BUCKET_MAX_SIZE) {
index = fl;
} else {
sl = OsMemSlGet(size, fl);
curIndex = ((fl - OS_MEM_LARGE_START_BUCKET) << OS_MEM_SLI) + sl + OS_MEM_SMALL_BUCKET_COUNT;
index = curIndex + 1;
}
tmp = OsMemNotEmptyIndexGet(poolHead, index);
if (tmp != OS_MEM_FREE_LIST_COUNT) {
index = tmp;
goto DONE;
}
for (index = LOS_Align(index + 1, 32); index < OS_MEM_FREE_LIST_COUNT; index += 32) {
mask = poolHead->freeListBitmap[index >> 5]; /* 5: Divide by 32 to calculate the index of the bitmap array. */
if (mask != 0) {
index = OsMemFFS(mask) + index;
goto DONE;
}
}
} while (0);
if (curIndex == OS_MEM_FREE_LIST_COUNT) {
return NULL;
}
*outIndex = curIndex;
return OsMemFindCurSuitableBlock(poolHead, curIndex, size);
DONE:
*outIndex = index;
return poolHead->freeList[index];
}
STATIC INLINE VOID OsMemSetFreeListBit(struct OsMemPoolHead *head, UINT32 index)
{
head->freeListBitmap[index >> 5] |= 1U << (index & 0x1f); /* 5: Divide by 32 to calculate the index of the bitmap array. */
}
STATIC INLINE VOID OsMemClearFreeListBit(struct OsMemPoolHead *head, UINT32 index)
{
head->freeListBitmap[index >> 5] &= ~(1U << (index & 0x1f)); /* 5: Divide by 32 to calculate the index of the bitmap array. */
}
STATIC INLINE VOID OsMemListAdd(struct OsMemPoolHead *pool, UINT32 listIndex, struct OsMemFreeNodeHead *node)
{
struct OsMemFreeNodeHead *firstNode = pool->freeList[listIndex];
if (firstNode != NULL) {
firstNode->prev = node;
}
node->prev = NULL;
node->next = firstNode;
pool->freeList[listIndex] = node;
OsMemSetFreeListBit(pool, listIndex);
node->header.magic = OS_MEM_NODE_MAGIC;
}
STATIC INLINE VOID OsMemListDelete(struct OsMemPoolHead *pool, UINT32 listIndex, struct OsMemFreeNodeHead *node)
{
if (node == pool->freeList[listIndex]) {
pool->freeList[listIndex] = node->next;
if (node->next == NULL) {
OsMemClearFreeListBit(pool, listIndex);
} else {
node->next->prev = NULL;
}
} else {
node->prev->next = node->next;
if (node->next != NULL) {
node->next->prev = node->prev;
}
}
node->header.magic = OS_MEM_NODE_MAGIC;
}
STATIC INLINE VOID OsMemFreeNodeAdd(VOID *pool, struct OsMemFreeNodeHead *node)
{
UINT32 index = OsMemFreeListIndexGet(node->header.sizeAndFlag);
if (index >= OS_MEM_FREE_LIST_COUNT) {
LOS_Panic("The index of free lists is error, index = %u\n", index);
return;
}
OsMemListAdd(pool, index, node);
}
STATIC INLINE VOID OsMemFreeNodeDelete(VOID *pool, struct OsMemFreeNodeHead *node)
{
UINT32 index = OsMemFreeListIndexGet(node->header.sizeAndFlag);
if (index >= OS_MEM_FREE_LIST_COUNT) {
LOS_Panic("The index of free lists is error, index = %u\n", index);
return;
}
OsMemListDelete(pool, index, node);
}
STATIC INLINE struct OsMemNodeHead *OsMemFreeNodeGet(VOID *pool, UINT32 size)
{
struct OsMemPoolHead *poolHead = (struct OsMemPoolHead *)pool;
UINT32 index;
struct OsMemFreeNodeHead *firstNode = OsMemFindNextSuitableBlock(pool, size, &index);
if (firstNode == NULL) {
return NULL;
}
OsMemListDelete(poolHead, index, firstNode);
return &firstNode->header;
}
STATIC INLINE VOID OsMemMergeNode(struct OsMemNodeHead *node)
{
struct OsMemNodeHead *nextNode = NULL;
node->ptr.prev->sizeAndFlag += node->sizeAndFlag;
nextNode = (struct OsMemNodeHead *)((UINTPTR)node + node->sizeAndFlag);
if (!OS_MEM_NODE_GET_LAST_FLAG(nextNode->sizeAndFlag)) {
nextNode->ptr.prev = node->ptr.prev;
}
}
STATIC INLINE VOID OsMemSplitNode(VOID *pool, struct OsMemNodeHead *allocNode, UINT32 allocSize)
{
struct OsMemFreeNodeHead *newFreeNode = NULL;
struct OsMemNodeHead *nextNode = NULL;
newFreeNode = (struct OsMemFreeNodeHead *)(VOID *)((UINT8 *)allocNode + allocSize);
newFreeNode->header.ptr.prev = allocNode;
newFreeNode->header.sizeAndFlag = allocNode->sizeAndFlag - allocSize;
allocNode->sizeAndFlag = allocSize;
nextNode = OS_MEM_NEXT_NODE(&newFreeNode->header);
if (!OS_MEM_NODE_GET_LAST_FLAG(nextNode->sizeAndFlag)) {
nextNode->ptr.prev = &newFreeNode->header;
if (!OS_MEM_NODE_GET_USED_FLAG(nextNode->sizeAndFlag)) {
OsMemFreeNodeDelete(pool, (struct OsMemFreeNodeHead *)nextNode);
OsMemMergeNode(nextNode);
}
}
OsMemFreeNodeAdd(pool, newFreeNode);
}
STATIC INLINE VOID *OsMemCreateUsedNode(VOID *addr)
{
struct OsMemUsedNodeHead *node = (struct OsMemUsedNodeHead *)addr;
#if OS_MEM_FREE_BY_TASKID
OsMemNodeSetTaskID(node);
#endif
return node + 1;
}
STATIC UINT32 OsMemPoolInit(VOID *pool, UINT32 size)
{
struct OsMemPoolHead *poolHead = (struct OsMemPoolHead *)pool;
struct OsMemNodeHead *newNode = NULL;
struct OsMemNodeHead *endNode = NULL;
(VOID)memset_s(poolHead, sizeof(struct OsMemPoolHead), 0, sizeof(struct OsMemPoolHead));
LOS_SpinInit(&poolHead->spinlock);
poolHead->info.pool = pool;
poolHead->info.totalSize = size;
poolHead->info.attr = OS_MEM_POOL_LOCK_ENABLE; /* default attr: lock, not expand. */
newNode = OS_MEM_FIRST_NODE(pool);
newNode->sizeAndFlag = (size - sizeof(struct OsMemPoolHead) - OS_MEM_NODE_HEAD_SIZE);
newNode->ptr.prev = NULL;
newNode->magic = OS_MEM_NODE_MAGIC;
OsMemFreeNodeAdd(pool, (struct OsMemFreeNodeHead *)newNode);
/* The last mem node */
endNode = OS_MEM_END_NODE(pool, size);
endNode->magic = OS_MEM_NODE_MAGIC;
#if OS_MEM_EXPAND_ENABLE
endNode->ptr.next = NULL;
OsMemSentinelNodeSet(endNode, NULL, 0);
#else
endNode->sizeAndFlag = 0;
endNode->ptr.prev = newNode;
OS_MEM_NODE_SET_USED_FLAG(endNode->sizeAndFlag);
#endif
#if defined(OS_MEM_WATERLINE) && (OS_MEM_WATERLINE == YES)
poolHead->info.curUsedSize = sizeof(struct OsMemPoolHead) + OS_MEM_NODE_HEAD_SIZE;
poolHead->info.waterLine = poolHead->info.curUsedSize;
#endif
return LOS_OK;
}
#ifdef LOSCFG_MEM_MUL_POOL
STATIC VOID OsMemPoolDeinit(VOID *pool)
{
(VOID)memset_s(pool, sizeof(struct OsMemPoolHead), 0, sizeof(struct OsMemPoolHead));
}
STATIC UINT32 OsMemPoolAdd(VOID *pool, UINT32 size)
{
VOID *nextPool = g_poolHead;
VOID *curPool = g_poolHead;
UINTPTR poolEnd;
while (nextPool != NULL) {
poolEnd = (UINTPTR)nextPool + LOS_MemPoolSizeGet(nextPool);
if (((pool <= nextPool) && (((UINTPTR)pool + size) > (UINTPTR)nextPool)) ||
(((UINTPTR)pool < poolEnd) && (((UINTPTR)pool + size) >= poolEnd))) {
PRINT_ERR("pool [%#x, %#x) conflict with pool [%#x, %#x)\n",
pool, (UINTPTR)pool + size,
nextPool, (UINTPTR)nextPool + LOS_MemPoolSizeGet(nextPool));
return LOS_NOK;
}
curPool = nextPool;
nextPool = ((struct OsMemPoolHead *)nextPool)->nextPool;
}
if (g_poolHead == NULL) {
g_poolHead = pool;
} else {
((struct OsMemPoolHead *)curPool)->nextPool = pool;
}
((struct OsMemPoolHead *)pool)->nextPool = NULL;
return LOS_OK;
}
STATIC UINT32 OsMemPoolDelete(VOID *pool)
{
UINT32 ret = LOS_NOK;
VOID *nextPool = NULL;
VOID *curPool = NULL;
do {
if (pool == g_poolHead) {
g_poolHead = ((struct OsMemPoolHead *)g_poolHead)->nextPool;
ret = LOS_OK;
break;
}
curPool = g_poolHead;
nextPool = g_poolHead;
while (nextPool != NULL) {
if (pool == nextPool) {
((struct OsMemPoolHead *)curPool)->nextPool = ((struct OsMemPoolHead *)nextPool)->nextPool;
ret = LOS_OK;
break;
}
curPool = nextPool;
nextPool = ((struct OsMemPoolHead *)nextPool)->nextPool;
}
} while (0);
return ret;
}
#endif
UINT32 LOS_MemInit(VOID *pool, UINT32 size)
{
if ((pool == NULL) || (size <= OS_MEM_MIN_POOL_SIZE)) {
return OS_ERROR;
}
size = OS_MEM_ALIGN(size, OS_MEM_ALIGN_SIZE);
if (OsMemPoolInit(pool, size)) {
return OS_ERROR;
}
#ifdef LOSCFG_MEM_MUL_POOL
if (OsMemPoolAdd(pool, size)) {
(VOID)OsMemPoolDeinit(pool);
return OS_ERROR;
}
#endif
#ifdef LOSCFG_KERNEL_TRACE
LOS_TraceReg(LOS_TRACE_MEM_TIME, OsMemTimeTrace, LOS_TRACE_MEM_TIME_NAME, LOS_TRACE_ENABLE);
LOS_TraceReg(LOS_TRACE_MEM_INFO, OsMemInfoTrace, LOS_TRACE_MEM_INFO_NAME, LOS_TRACE_ENABLE);
#endif
return LOS_OK;
}
#ifdef LOSCFG_MEM_MUL_POOL
UINT32 LOS_MemDeInit(VOID *pool)
{
if (pool == NULL) {
return OS_ERROR;
}
if (OsMemPoolDelete(pool)) {
return OS_ERROR;
}
OsMemPoolDeinit(pool);
#ifdef LOSCFG_KERNEL_TRACE
LOS_TraceUnreg(LOS_TRACE_MEM_TIME);
LOS_TraceUnreg(LOS_TRACE_MEM_INFO);
#endif
return LOS_OK;
}
UINT32 LOS_MemPoolList(VOID)
{
VOID *nextPool = g_poolHead;
UINT32 index = 0;
while (nextPool != NULL) {
PRINTK("pool%u :\n", index);
index++;
OsMemInfoPrint(nextPool);
nextPool = ((struct OsMemPoolHead *)nextPool)->nextPool;
}
return index;
}
#endif
STATIC INLINE VOID *OsMemAlloc(struct OsMemPoolHead *pool, UINT32 size, UINT32 intSave)
{
struct OsMemNodeHead *allocNode = NULL;
#ifdef LOSCFG_BASE_MEM_NODE_INTEGRITY_CHECK
if (OsMemAllocCheck(pool, intSave) == LOS_NOK) {
return NULL;
}
#endif
//内存对齐 申请的大小+头节点
UINT32 allocSize = OS_MEM_ALIGN(size + OS_MEM_NODE_HEAD_SIZE, OS_MEM_ALIGN_SIZE);
if (allocSize == 0) {
return NULL;
}
#if OS_MEM_EXPAND_ENABLE
retry:
#endif
allocNode = OsMemFreeNodeGet(pool, allocSize);
if (allocNode == NULL) {
#if OS_MEM_EXPAND_ENABLE
if (pool->info.attr & OS_MEM_POOL_EXPAND_ENABLE) {
INT32 ret = OsMemPoolExpand(pool, allocSize, intSave);
if (ret == 0) {
goto retry;
}
}
#endif
_MEM_UNLOCK(pool, intSave);
PRINT_ERR("---------------------------------------------------"
"--------------------------------------------------------\n");
OsMemInfoPrint(pool);
PRINT_ERR("[%s] No suitable free block, require free node size: 0x%x\n", __FUNCTION__, allocSize);
PRINT_ERR("----------------------------------------------------"
"-------------------------------------------------------\n");
_MEM_LOCK(pool, intSave);
return NULL;
}
if ((allocSize + OS_MEM_NODE_HEAD_SIZE + OS_MEM_MIN_ALLOC_SIZE) <= allocNode->sizeAndFlag) {
OsMemSplitNode(pool, allocNode, allocSize);
}
OS_MEM_NODE_SET_USED_FLAG(allocNode->sizeAndFlag);
OsMemWaterUsedRecord(pool, OS_MEM_NODE_GET_SIZE(allocNode->sizeAndFlag));
#ifdef LOSCFG_MEM_LEAKCHECK
OsMemLinkRegisterRecord(allocNode);
#endif
return OsMemCreateUsedNode((VOID *)allocNode);
}
//pool 动态内存池的起始位置
VOID *LOS_MemAlloc(VOID *pool, UINT32 size)
{
#ifdef LOSCFG_KERNEL_TRACE
UINT64 start = HalClockGetCycles();
#endif
if ((pool == NULL) || (size == 0)) {
return (size > 0) ? OsVmBootMemAlloc(size) : NULL;
}
if (size < OS_MEM_MIN_ALLOC_SIZE) {
size = OS_MEM_MIN_ALLOC_SIZE;
}
struct OsMemPoolHead *poolHead = (struct OsMemPoolHead *)pool;
VOID *ptr = NULL;
UINT32 intSave;
do {
if (OS_MEM_NODE_GET_USED_FLAG(size) || OS_MEM_NODE_GET_ALIGNED_FLAG(size)) {
break;
}
_MEM_LOCK(poolHead, intSave);
ptr = OsMemAlloc(poolHead, size, intSave);
_MEM_UNLOCK(poolHead, intSave);
} while (0);
#ifdef LOSCFG_KERNEL_TRACE
UINT64 end = HalClockGetCycles();
UINT32 timeUsed = MEM_TRACE_CYCLE_TO_US(end - start);
LOS_Trace(LOS_TRACE_MEM_TIME, (UINTPTR)pool & MEM_POOL_ADDR_MASK, MEM_TRACE_MALLOC, timeUsed);
LOS_MEM_POOL_STATUS poolStatus = {0};
(VOID)LOS_MemInfoGet(pool, &poolStatus);
UINT8 fragment = 100 - poolstatus.uwMaxFreeNodeSize * 100 / poolstatus.uwTotalFreeSize; /* 100: percent denominator. */
UINT8 usage = LOS_MemTotalUsedGet(pool) * 100 / LOS_MemPoolSizeGet(pool); /* 100: percent denominator. */
LOS_Trace(LOS_TRACE_MEM_INFO, (UINTPTR)pool & MEM_POOL_ADDR_MASK, fragment, usage, poolstatus.uwTotalFreeSize,
poolstatus.uwMaxFreeNodeSize, poolstatus.uwUsedNodeNum, poolstatus.uwFreeNodeNum);
#endif
return ptr;
}
VOID *LOS_MemAllocAlign(VOID *pool, UINT32 size, UINT32 boundary)
{
#ifdef LOSCFG_KERNEL_TRACE
UINT64 start = HalClockGetCycles();
#endif
UINT32 gapSize;
if ((pool == NULL) || (size == 0) || (boundary == 0) || !OS_MEM_IS_POW_TWO(boundary) ||
!OS_MEM_IS_ALIGNED(boundary, sizeof(VOID *))) {
return NULL;
}
if (size < OS_MEM_MIN_ALLOC_SIZE) {
size = OS_MEM_MIN_ALLOC_SIZE;
}
/*
* sizeof(gapSize) bytes stores offset between alignedPtr and ptr,
* the ptr has been OS_MEM_ALIGN_SIZE(4 or 8) aligned, so maximum
* offset between alignedPtr and ptr is boundary - OS_MEM_ALIGN_SIZE
*/
if ((boundary - sizeof(gapSize)) > ((UINT32)(-1) - size)) {
return NULL;
}
UINT32 useSize = (size + boundary) - sizeof(gapSize);
if (OS_MEM_NODE_GET_USED_FLAG(useSize) || OS_MEM_NODE_GET_ALIGNED_FLAG(useSize)) {
return NULL;
}
struct OsMemPoolHead *poolHead = (struct OsMemPoolHead *)pool;
UINT32 intSave;
VOID *ptr = NULL;
VOID *alignedPtr = NULL;
do {
_MEM_LOCK(poolHead, intSave);
ptr = OsMemAlloc(pool, useSize, intSave);
_MEM_UNLOCK(poolHead, intSave);
alignedPtr = (VOID *)OS_MEM_ALIGN(ptr, boundary);
if (ptr == alignedPtr) {
break;
}
/* store gapSize in address (ptr - 4), it will be checked while free */
gapSize = (UINT32)((UINTPTR)alignedPtr - (UINTPTR)ptr);
struct OsMemUsedNodeHead *allocNode = (struct OsMemUsedNodeHead *)ptr - 1;
OS_MEM_NODE_SET_ALIGNED_FLAG(allocNode->header.sizeAndFlag);
OS_MEM_NODE_SET_ALIGNED_FLAG(gapSize);
*(UINT32 *)((UINTPTR)alignedPtr - sizeof(gapSize)) = gapSize;
ptr = alignedPtr;
} while (0);
#ifdef LOSCFG_KERNEL_TRACE
UINT64 end = HalClockGetCycles();
UINT32 timeUsed = MEM_TRACE_CYCLE_TO_US(end - start);
LOS_Trace(LOS_TRACE_MEM_TIME, (UINTPTR)pool & MEM_POOL_ADDR_MASK, MEM_TRACE_MEMALIGN, timeUsed);
#endif
return ptr;
}
STATIC INLINE BOOL OsMemAddrValidCheck(const struct OsMemPoolHead *pool, const VOID *addr)
{
UINT32 size;
/* First node prev is NULL */
if (addr == NULL) {
return TRUE;
}
size = pool->info.totalSize;
if (OS_MEM_MIDDLE_ADDR_OPEN_END(pool + 1, addr, (UINTPTR)pool + size)) {
return TRUE;
}
#if OS_MEM_EXPAND_ENABLE
struct OsMemNodeHead *node = NULL;
struct OsMemNodeHead *sentinel = OS_MEM_END_NODE(pool, size);
while (OsMemIsLastSentinelNode(sentinel) == FALSE) {
size = OS_MEM_NODE_GET_SIZE(sentinel->sizeAndFlag);
node = OsMemSentinelNodeGet(sentinel);
sentinel = OS_MEM_END_NODE(node, size);
if (OS_MEM_MIDDLE_ADDR_OPEN_END(node, addr, (UINTPTR)node + size)) {
return TRUE;
}
}
#endif
return FALSE;
}
STATIC INLINE BOOL OsMemIsNodeValid(const struct OsMemNodeHead *node, const struct OsMemNodeHead *startNode,
const struct OsMemNodeHead *endNode,
const struct OsMemPoolHead *poolInfo)
{
if (!OS_MEM_MIDDLE_ADDR(startNode, node, endNode)) {
return FALSE;
}
if (OS_MEM_NODE_GET_USED_FLAG(node->sizeAndFlag)) {
if (!OS_MEM_MAGIC_VALID(node)) {
return FALSE;
}
return TRUE;
}
if (!OsMemAddrValidCheck(poolInfo, node->ptr.prev)) {
return FALSE;
}
return TRUE;
}
STATIC UINT32 OsMemCheckUsedNode(const struct OsMemPoolHead *pool, const struct OsMemNodeHead *node)
{
struct OsMemNodeHead *startNode = (struct OsMemNodeHead *)OS_MEM_FIRST_NODE(pool);
struct OsMemNodeHead *endNode = (struct OsMemNodeHead *)OS_MEM_END_NODE(pool, pool->info.totalSize);
struct OsMemNodeHead *nextNode = NULL;
BOOL doneFlag = FALSE;
do {
do {
if (!OsMemIsNodeValid(node, startNode, endNode, pool)) {
break;
}
if (!OS_MEM_NODE_GET_USED_FLAG(node->sizeAndFlag)) {
break;
}
nextNode = OS_MEM_NEXT_NODE(node);
if (!OsMemIsNodeValid(nextNode, startNode, endNode, pool)) {
break;
}
if (!OS_MEM_NODE_GET_LAST_FLAG(nextNode->sizeAndFlag)) {
if (nextNode->ptr.prev != node) {
break;
}
}
if ((node != startNode) &&
((!OsMemIsNodeValid(node->ptr.prev, startNode, endNode, pool)) ||
(OS_MEM_NEXT_NODE(node->ptr.prev) != node))) {
break;
}
doneFlag = TRUE;
} while (0);
if (!doneFlag) {
#if OS_MEM_EXPAND_ENABLE
if (OsMemIsLastSentinelNode(endNode) == FALSE) {
startNode = OsMemSentinelNodeGet(endNode);
endNode = OS_MEM_END_NODE(startNode, OS_MEM_NODE_GET_SIZE(endNode->sizeAndFlag));
continue;
}
#endif
return LOS_NOK;
}
} while (!doneFlag);
return LOS_OK;
}
STATIC INLINE UINT32 OsMemFree(struct OsMemPoolHead *pool, struct OsMemNodeHead *node)
{
UINT32 ret = OsMemCheckUsedNode(pool, node);
if (ret != LOS_OK) {
PRINT_ERR("OsMemFree check error!\n");
return ret;
}
#if defined(OS_MEM_WATERLINE) && (OS_MEM_WATERLINE == YES)
pool->info.curUsedSize -= OS_MEM_NODE_GET_SIZE(node->sizeAndFlag);
#endif
node->sizeAndFlag = OS_MEM_NODE_GET_SIZE(node->sizeAndFlag);
#ifdef LOSCFG_MEM_LEAKCHECK
OsMemLinkRegisterRecord(node);
#endif
struct OsMemNodeHead *preNode = node->ptr.prev; /* merage preNode */
if ((preNode != NULL) && !OS_MEM_NODE_GET_USED_FLAG(preNode->sizeAndFlag)) {
OsMemFreeNodeDelete(pool, (struct OsMemFreeNodeHead *)preNode);
OsMemMergeNode(node);
node = preNode;
}
struct OsMemNodeHead *nextNode = OS_MEM_NEXT_NODE(node); /* merage nextNode */
if ((nextNode != NULL) && !OS_MEM_NODE_GET_USED_FLAG(nextNode->sizeAndFlag)) {
OsMemFreeNodeDelete(pool, (struct OsMemFreeNodeHead *)nextNode);
OsMemMergeNode(nextNode);
}
#if OS_MEM_EXPAND_ENABLE
if (pool->info.attr & OS_MEM_POOL_EXPAND_ENABLE) {
/* if this is a expand head node, and all unused, free it to pmm */
if ((node->ptr.prev != NULL) && (node->ptr.prev > node)) {
if (TryShrinkPool(pool, node)) {
return LOS_OK;
}
}
}
#endif
OsMemFreeNodeAdd(pool, (struct OsMemFreeNodeHead *)node);
return ret;
}
UINT32 LOS_MemFree(VOID *pool, VOID *ptr)
{
#ifdef LOSCFG_KERNEL_TRACE
UINT64 start = HalClockGetCycles();
#endif
if ((pool == NULL) || (ptr == NULL) || !OS_MEM_IS_ALIGNED(pool, sizeof(VOID *)) ||
!OS_MEM_IS_ALIGNED(ptr, sizeof(VOID *))) {
return LOS_NOK;
}
UINT32 ret = LOS_NOK;
struct OsMemPoolHead *poolHead = (struct OsMemPoolHead *)pool;
struct OsMemNodeHead *node = NULL;
UINT32 intSave;
do {
UINT32 gapSize = *(UINT32 *)((UINTPTR)ptr - sizeof(UINT32));
if (OS_MEM_NODE_GET_ALIGNED_FLAG(gapSize) && OS_MEM_NODE_GET_USED_FLAG(gapSize)) {
PRINT_ERR("[%s:%d]gapSize:0x%x error\n", __FUNCTION__, __LINE__, gapSize);
break;
}
node = (struct OsMemNodeHead *)((UINTPTR)ptr - OS_MEM_NODE_HEAD_SIZE);
if (OS_MEM_NODE_GET_ALIGNED_FLAG(gapSize)) {
gapSize = OS_MEM_NODE_GET_ALIGNED_GAPSIZE(gapSize);
if ((gapSize & (OS_MEM_ALIGN_SIZE - 1)) || (gapSize > ((UINTPTR)ptr - OS_MEM_NODE_HEAD_SIZE))) {
PRINT_ERR("illegal gapSize: 0x%x\n", gapSize);
break;
}
node = (struct OsMemNodeHead *)((UINTPTR)ptr - gapSize - OS_MEM_NODE_HEAD_SIZE);
}
_MEM_LOCK(poolHead, intSave);
ret = OsMemFree(poolHead, node);
_MEM_UNLOCK(poolHead, intSave);
} while (0);
#ifdef LOSCFG_KERNEL_TRACE
UINT64 end = HalClockGetCycles();
UINT32 timeUsed = MEM_TRACE_CYCLE_TO_US(end - start);
LOS_Trace(LOS_TRACE_MEM_TIME, (UINTPTR)pool & MEM_POOL_ADDR_MASK, MEM_TRACE_FREE, timeUsed);
#endif
return ret;
}
STATIC INLINE VOID OsMemReAllocSmaller(VOID *pool, UINT32 allocSize, struct OsMemNodeHead *node, UINT32 nodeSize)
{
#if defined(OS_MEM_WATERLINE) && (OS_MEM_WATERLINE == YES)
struct OsMemPoolHead *poolInfo = (struct OsMemPoolHead *)pool;
#endif
node->sizeAndFlag = nodeSize;
if ((allocSize + OS_MEM_NODE_HEAD_SIZE + OS_MEM_MIN_ALLOC_SIZE) <= nodeSize) {
OsMemSplitNode(pool, node, allocSize);
OS_MEM_NODE_SET_USED_FLAG(node->sizeAndFlag);
#if defined(OS_MEM_WATERLINE) && (OS_MEM_WATERLINE == YES)
poolInfo->info.curUsedSize -= nodeSize - allocSize;
#endif
}
OS_MEM_NODE_SET_USED_FLAG(node->sizeAndFlag);
#ifdef LOSCFG_MEM_LEAKCHECK
OsMemLinkRegisterRecord(node);
#endif
}
STATIC INLINE VOID OsMemMergeNodeForReAllocBigger(VOID *pool, UINT32 allocSize, struct OsMemNodeHead *node,
UINT32 nodeSize, struct OsMemNodeHead *nextNode)
{
node->sizeAndFlag = nodeSize;
OsMemFreeNodeDelete(pool, (struct OsMemFreeNodeHead *)nextNode);
OsMemMergeNode(nextNode);
if ((allocSize + OS_MEM_NODE_HEAD_SIZE + OS_MEM_MIN_ALLOC_SIZE) <= node->sizeAndFlag) {
OsMemSplitNode(pool, node, allocSize);
}
OS_MEM_NODE_SET_USED_FLAG(node->sizeAndFlag);
OsMemWaterUsedRecord((struct OsMemPoolHead *)pool, node->sizeAndFlag - nodeSize);
#ifdef LOSCFG_MEM_LEAKCHECK
OsMemLinkRegisterRecord(node);
#endif
}
STATIC INLINE VOID *OsGetRealPtr(const VOID *pool, VOID *ptr)
{
VOID *realPtr = ptr;
UINT32 gapSize = *((UINT32 *)((UINTPTR)ptr - sizeof(UINT32)));
if (OS_MEM_NODE_GET_ALIGNED_FLAG(gapSize) && OS_MEM_NODE_GET_USED_FLAG(gapSize)) {
PRINT_ERR("[%s:%d]gapSize:0x%x error\n", __FUNCTION__, __LINE__, gapSize);
return NULL;
}
if (OS_MEM_NODE_GET_ALIGNED_FLAG(gapSize)) {
gapSize = OS_MEM_NODE_GET_ALIGNED_GAPSIZE(gapSize);
if ((gapSize & (OS_MEM_ALIGN_SIZE - 1)) ||
(gapSize > ((UINTPTR)ptr - OS_MEM_NODE_HEAD_SIZE - (UINTPTR)pool))) {
PRINT_ERR("[%s:%d]gapSize:0x%x error\n", __FUNCTION__, __LINE__, gapSize);
return NULL;
}
realPtr = (VOID *)((UINTPTR)ptr - (UINTPTR)gapSize);
}
return realPtr;
}
STATIC INLINE VOID *OsMemRealloc(struct OsMemPoolHead *pool, const VOID *ptr,
struct OsMemNodeHead *node, UINT32 size, UINT32 intSave)
{
struct OsMemNodeHead *nextNode = NULL;
UINT32 allocSize = OS_MEM_ALIGN(size + OS_MEM_NODE_HEAD_SIZE, OS_MEM_ALIGN_SIZE);
UINT32 nodeSize = OS_MEM_NODE_GET_SIZE(node->sizeAndFlag);
VOID *tmpPtr = NULL;
if (nodeSize >= allocSize) {
OsMemReAllocSmaller(pool, allocSize, node, nodeSize);
return (VOID *)ptr;
}
nextNode = OS_MEM_NEXT_NODE(node);
if (!OS_MEM_NODE_GET_USED_FLAG(nextNode->sizeAndFlag) &&
((nextNode->sizeAndFlag + nodeSize) >= allocSize)) {
OsMemMergeNodeForReAllocBigger(pool, allocSize, node, nodeSize, nextNode);
return (VOID *)ptr;
}
tmpPtr = OsMemAlloc(pool, size, intSave);
if (tmpPtr != NULL) {
if (memcpy_s(tmpPtr, size, ptr, (nodeSize - OS_MEM_NODE_HEAD_SIZE)) != EOK) {
_MEM_UNLOCK(pool, intSave);
(VOID)LOS_MemFree((VOID *)pool, (VOID *)tmpPtr);
_MEM_LOCK(pool, intSave);
return NULL;
}
(VOID)OsMemFree(pool, node);
}
return tmpPtr;
}
VOID *LOS_MemRealloc(VOID *pool, VOID *ptr, UINT32 size)
{
#ifdef LOSCFG_KERNEL_TRACE
UINT64 start = HalClockGetCycles();
#endif
if ((pool == NULL) || OS_MEM_NODE_GET_USED_FLAG(size) || OS_MEM_NODE_GET_ALIGNED_FLAG(size)) {
return NULL;
}
if (size < OS_MEM_MIN_ALLOC_SIZE) {
size = OS_MEM_MIN_ALLOC_SIZE;
}
if (ptr == NULL) {
return LOS_MemAlloc(pool, size);
}
if (size == 0) {
(VOID)LOS_MemFree(pool, ptr);
return NULL;
}
struct OsMemPoolHead *poolHead = (struct OsMemPoolHead *)pool;
struct OsMemNodeHead *node = NULL;
VOID *newPtr = NULL;
UINT32 intSave;
_MEM_LOCK(poolHead, intSave);
do {
ptr = OsGetRealPtr(pool, ptr);
if (ptr == NULL) {
break;
}
node = (struct OsMemNodeHead *)((UINTPTR)ptr - OS_MEM_NODE_HEAD_SIZE);
if (OsMemCheckUsedNode(pool, node) != LOS_OK) {
break;
}
newPtr = OsMemRealloc(pool, ptr, node, size, intSave);
} while (0);
_MEM_UNLOCK(poolHead, intSave);
#ifdef LOSCFG_KERNEL_TRACE
UINT64 end = HalClockGetCycles();
UINT32 timeUsed = MEM_TRACE_CYCLE_TO_US(end - start);
LOS_Trace(LOS_TRACE_MEM_TIME, (UINTPTR)pool & MEM_POOL_ADDR_MASK, MEM_TRACE_REALLOC, timeUsed);
#endif
return newPtr;
}
#if OS_MEM_FREE_BY_TASKID
UINT32 LOS_MemFreeByTaskID(VOID *pool, UINT32 taskID)
{
if (pool == NULL) {
return OS_ERROR;
}
if (taskID >= LOSCFG_BASE_CORE_TSK_LIMIT) {
return OS_ERROR;
}
struct OsMemPoolHead *poolHead = (struct OsMemPoolHead *)pool;
struct OsMemNodeHead *tmpNode = NULL;
struct OsMemUsedNodeHead *node = NULL;
struct OsMemNodeHead *endNode = NULL;
UINT32 size;
UINT32 intSave;
_MEM_LOCK(poolHead, intSave);
endNode = OS_MEM_END_NODE(pool, poolHead->info.totalSize);
for (tmpNode = OS_MEM_FIRST_NODE(pool); tmpNode <= endNode;) {
if (tmpNode == endNode) {
if (OsMemIsLastSentinelNode(endNode) == FALSE) {
size = OS_MEM_NODE_GET_SIZE(endNode->sizeAndFlag);
tmpNode = OsMemSentinelNodeGet(endNode);
endNode = OS_MEM_END_NODE(tmpNode, size);
continue;
} else {
break;
}
} else {
if (!OS_MEM_NODE_GET_USED_FLAG(tmpNode->sizeAndFlag)) {
tmpNode = OS_MEM_NEXT_NODE(tmpNode);
continue;
}
node = (struct OsMemUsedNodeHead *)tmpNode;
tmpNode = OS_MEM_NEXT_NODE(tmpNode);
if (node->taskID == taskID) {
OsMemFree(poolHead, &node->header);
}
}
}
_MEM_UNLOCK(poolHead, intSave);
return LOS_OK;
}
#endif
UINT32 LOS_MemPoolSizeGet(const VOID *pool)
{
UINT32 count = 0;
if (pool == NULL) {
return LOS_NOK;
}
count += ((struct OsMemPoolHead *)pool)->info.totalSize;
#if OS_MEM_EXPAND_ENABLE
UINT32 size;
struct OsMemNodeHead *node = NULL;
struct OsMemNodeHead *sentinel = OS_MEM_END_NODE(pool, count);
while (OsMemIsLastSentinelNode(sentinel) == FALSE) {
size = OS_MEM_NODE_GET_SIZE(sentinel->sizeAndFlag);
node = OsMemSentinelNodeGet(sentinel);
sentinel = OS_MEM_END_NODE(node, size);
count += size;
}
#endif
return count;
}
UINT32 LOS_MemTotalUsedGet(VOID *pool)
{
struct OsMemNodeHead *tmpNode = NULL;
struct OsMemPoolHead *poolInfo = (struct OsMemPoolHead *)pool;
struct OsMemNodeHead *endNode = NULL;
UINT32 memUsed = 0;
UINT32 intSave;
if (pool == NULL) {
return LOS_NOK;
}
_MEM_LOCK(poolInfo, intSave);
endNode = OS_MEM_END_NODE(pool, poolInfo->info.totalSize);
#if OS_MEM_EXPAND_ENABLE
UINT32 size;
for (tmpNode = OS_MEM_FIRST_NODE(pool); tmpNode <= endNode;) {
if (tmpNode == endNode) {
memUsed += OS_MEM_NODE_HEAD_SIZE;
if (OsMemIsLastSentinelNode(endNode) == FALSE) {
size = OS_MEM_NODE_GET_SIZE(endNode->sizeAndFlag);
tmpNode = OsMemSentinelNodeGet(endNode);
endNode = OS_MEM_END_NODE(tmpNode, size);
continue;
} else {
break;
}
} else {
if (OS_MEM_NODE_GET_USED_FLAG(tmpNode->sizeAndFlag)) {
memUsed += OS_MEM_NODE_GET_SIZE(tmpNode->sizeAndFlag);
}
tmpNode = OS_MEM_NEXT_NODE(tmpNode);
}
}
#else
for (tmpNode = OS_MEM_FIRST_NODE(pool); tmpNode < endNode;) {
if (OS_MEM_NODE_GET_USED_FLAG(tmpNode->sizeAndFlag)) {
memUsed += OS_MEM_NODE_GET_SIZE(tmpNode->sizeAndFlag);
}
tmpNode = OS_MEM_NEXT_NODE(tmpNode);
}
#endif
_MEM_UNLOCK(poolInfo, intSave);
return memUsed;
}
STATIC INLINE VOID OsMemMagicCheckPrint(struct OsMemNodeHead **tmpNode)
{
PRINT_ERR("[%s], %d, memory check error!\n"
"memory used but magic num wrong, magic num = %#x\n",
__FUNCTION__, __LINE__, (*tmpNode)->magic);
}
STATIC UINT32 OsMemAddrValidCheckPrint(const VOID *pool, struct OsMemFreeNodeHead **tmpNode)
{
if (!OsMemAddrValidCheck(pool, (*tmpNode)->prev)) {
PRINT_ERR("[%s], %d, memory check error!\n"
" freeNode.prev:%#x is out of legal mem range\n",
__FUNCTION__, __LINE__, (*tmpNode)->prev);
return LOS_NOK;
}
if (!OsMemAddrValidCheck(pool, (*tmpNode)->next)) {
PRINT_ERR("[%s], %d, memory check error!\n"
" freeNode.next:%#x is out of legal mem range\n",
__FUNCTION__, __LINE__, (*tmpNode)->next);
return LOS_NOK;
}
return LOS_OK;
}
STATIC UINT32 OsMemIntegrityCheckSub(struct OsMemNodeHead **tmpNode, const VOID *pool,
const struct OsMemNodeHead *endNode)
{
if (!OS_MEM_MAGIC_VALID(*tmpNode)) {
OsMemMagicCheckPrint(tmpNode);
return LOS_NOK;
}
if (!OS_MEM_NODE_GET_USED_FLAG((*tmpNode)->sizeAndFlag)) { /* is free node, check free node range */
if (OsMemAddrValidCheckPrint(pool, (struct OsMemFreeNodeHead **)tmpNode)) {
return LOS_NOK;
}
}
return LOS_OK;
}
STATIC UINT32 OsMemFreeListNodeCheck(const struct OsMemPoolHead *pool,
const struct OsMemFreeNodeHead *node)
{
if (!OsMemAddrValidCheck(pool, node) ||
!OsMemAddrValidCheck(pool, node->prev) ||
!OsMemAddrValidCheck(pool, node->next) ||
!OsMemAddrValidCheck(pool, node->header.ptr.prev)) {
return LOS_NOK;
}
if (!OS_MEM_IS_ALIGNED(node, sizeof(VOID *)) ||
!OS_MEM_IS_ALIGNED(node->prev, sizeof(VOID *)) ||
!OS_MEM_IS_ALIGNED(node->next, sizeof(VOID *)) ||
!OS_MEM_IS_ALIGNED(node->header.ptr.prev, sizeof(VOID *))) {
return LOS_NOK;
}
return LOS_OK;
}
STATIC VOID OsMemPoolHeadCheck(const struct OsMemPoolHead *pool)
{
struct OsMemFreeNodeHead *tmpNode = NULL;
UINT32 index;
UINT32 flag = 0;
if ((pool->info.pool != pool) || !OS_MEM_IS_ALIGNED(pool, sizeof(VOID *))) {
PRINT_ERR("wrong mem pool addr: %#x, func:%s, line:%d\n", pool, __FUNCTION__, __LINE__);
return;
}
for (index = 0; index < OS_MEM_FREE_LIST_COUNT; index++) {
for (tmpNode = pool->freeList[index]; tmpNode != NULL; tmpNode = tmpNode->next) {
if (OsMemFreeListNodeCheck(pool, tmpNode)) {
flag = 1;
PRINT_ERR("FreeListIndex: %u, node: %#x, bNode: %#x, prev: %#x, next: %#x\n",
index, tmpNode, tmpNode->header.ptr.prev, tmpNode->prev, tmpNode->next);
}
}
}
if (flag) {
PRINTK("mem pool info: poolAddr: %#x, poolSize: 0x%x\n", pool, pool->info.totalSize);
#if defined(OS_MEM_WATERLINE) && (OS_MEM_WATERLINE == YES)
PRINTK("mem pool info: poolWaterLine: 0x%x, poolCurUsedSize: 0x%x\n", pool->info.waterLine,
pool->info.curUsedSize);
#endif
#if OS_MEM_EXPAND_ENABLE
UINT32 size;
struct OsMemNodeHead *node = NULL;
struct OsMemNodeHead *sentinel = OS_MEM_END_NODE(pool, pool->info.totalSize);
while (OsMemIsLastSentinelNode(sentinel) == FALSE) {
size = OS_MEM_NODE_GET_SIZE(sentinel->sizeAndFlag);
node = OsMemSentinelNodeGet(sentinel);
sentinel = OS_MEM_END_NODE(node, size);
PRINTK("expand node info: nodeAddr: %#x, nodeSize: 0x%x\n", node, size);
}
#endif
}
}
STATIC UINT32 OsMemIntegrityCheck(const struct OsMemPoolHead *pool, struct OsMemNodeHead **tmpNode,
struct OsMemNodeHead **preNode)
{
struct OsMemNodeHead *endNode = OS_MEM_END_NODE(pool, pool->info.totalSize);
OsMemPoolHeadCheck(pool);
*preNode = OS_MEM_FIRST_NODE(pool);
do {
for (*tmpNode = *preNode; *tmpNode < endNode; *tmpNode = OS_MEM_NEXT_NODE(*tmpNode)) {
if (OsMemIntegrityCheckSub(tmpNode, pool, endNode) == LOS_NOK) {
return LOS_NOK;
}
*preNode = *tmpNode;
}
#if OS_MEM_EXPAND_ENABLE
if (OsMemIsLastSentinelNode(*tmpNode) == FALSE) {
*preNode = OsMemSentinelNodeGet(*tmpNode);
endNode = OS_MEM_END_NODE(*preNode, OS_MEM_NODE_GET_SIZE((*tmpNode)->sizeAndFlag));
} else
#endif
{
break;
}
} while (1);
return LOS_OK;
}
STATIC VOID OsMemNodeInfo(const struct OsMemNodeHead *tmpNode,
const struct OsMemNodeHead *preNode)
{
struct OsMemUsedNodeHead *usedNode = NULL;
struct OsMemFreeNodeHead *freeNode = NULL;
if (tmpNode == preNode) {
PRINTK("\n the broken node is the first node\n");
}
if (OS_MEM_NODE_GET_USED_FLAG(tmpNode->sizeAndFlag)) {
usedNode = (struct OsMemUsedNodeHead *)tmpNode;
PRINTK("\n broken node head: %#x %#x %#x, ",
usedNode->header.ptr.prev, usedNode->header.magic, usedNode->header.sizeAndFlag);
} else {
freeNode = (struct OsMemFreeNodeHead *)tmpNode;
PRINTK("\n broken node head: %#x %#x %#x %#x, ",
freeNode->header.ptr.prev, freeNode->next, freeNode->prev, freeNode->header.magic,
freeNode->header.sizeAndFlag);
}
if (OS_MEM_NODE_GET_USED_FLAG(preNode->sizeAndFlag)) {
usedNode = (struct OsMemUsedNodeHead *)preNode;
PRINTK("prev node head: %#x %#x %#x\n",
usedNode->header.ptr.prev, usedNode->header.magic, usedNode->header.sizeAndFlag);
} else {
freeNode = (struct OsMemFreeNodeHead *)preNode;
PRINTK("prev node head: %#x %#x %#x %#x, ",
freeNode->header.ptr.prev, freeNode->next, freeNode->prev, freeNode->header.magic,
freeNode->header.sizeAndFlag);
}
#ifdef LOSCFG_MEM_LEAKCHECK
OsMemNodeBacktraceInfo(tmpNode, preNode);
#endif
PRINTK("\n---------------------------------------------\n");
PRINTK(" dump mem tmpNode:%#x ~ %#x\n", tmpNode, ((UINTPTR)tmpNode + OS_MEM_NODE_DUMP_SIZE));
OsDumpMemByte(OS_MEM_NODE_DUMP_SIZE, (UINTPTR)tmpNode);
PRINTK("\n---------------------------------------------\n");
if (preNode != tmpNode) {
PRINTK(" dump mem :%#x ~ tmpNode:%#x\n", ((UINTPTR)tmpNode - OS_MEM_NODE_DUMP_SIZE), tmpNode);
OsDumpMemByte(OS_MEM_NODE_DUMP_SIZE, ((UINTPTR)tmpNode - OS_MEM_NODE_DUMP_SIZE));
PRINTK("\n---------------------------------------------\n");
}
}
STATIC VOID OsMemIntegrityCheckError(struct OsMemPoolHead *pool,
const struct OsMemNodeHead *tmpNode,
const struct OsMemNodeHead *preNode,
UINT32 intSave)
{
OsMemNodeInfo(tmpNode, preNode);
#if OS_MEM_FREE_BY_TASKID
LosTaskCB *taskCB = NULL;
if (OS_MEM_NODE_GET_USED_FLAG(preNode->sizeAndFlag)) {
struct OsMemUsedNodeHead *usedNode = (struct OsMemUsedNodeHead *)preNode;
UINT32 taskID = usedNode->taskID;
if (OS_TID_CHECK_INVALID(taskID)) {
_MEM_UNLOCK(pool, intSave);
LOS_Panic("Task ID %u in pre node is invalid!\n", taskID);
return;
}
taskCB = OS_TCB_FROM_TID(taskID);
if (OsTaskIsUnused(taskCB) || (taskCB->taskEntry == NULL)) {
_MEM_UNLOCK(pool, intSave);
LOS_Panic("\r\nTask ID %u in pre node is not created!\n", taskID);
return;
}
} else {
PRINTK("The prev node is free\n");
}
_MEM_UNLOCK(pool, intSave);
LOS_Panic("cur node: %#x\npre node: %#x\npre node was allocated by task:%s\n",
tmpNode, preNode, taskCB->taskName);
#else
_MEM_UNLOCK(pool, intSave);
LOS_Panic("Memory interity check error, cur node: %#x, pre node: %#x\n", tmpNode, preNode);
#endif
}
#ifdef LOSCFG_BASE_MEM_NODE_INTEGRITY_CHECK
STATIC INLINE UINT32 OsMemAllocCheck(struct OsMemPoolHead *pool, UINT32 intSave)
{
struct OsMemNodeHead *tmpNode = NULL;
struct OsMemNodeHead *preNode = NULL;
if (OsMemIntegrityCheck(pool, &tmpNode, &preNode)) {
OsMemIntegrityCheckError(pool, tmpNode, preNode, intSave);
return LOS_NOK;
}
return LOS_OK;
}
#endif
UINT32 LOS_MemIntegrityCheck(const VOID *pool)
{
if (pool == NULL) {
return LOS_NOK;
}
struct OsMemPoolHead *poolHead = (struct OsMemPoolHead *)pool;
struct OsMemNodeHead *tmpNode = NULL;
struct OsMemNodeHead *preNode = NULL;
UINT32 intSave = 0;
_MEM_LOCK(poolHead, intSave);
if (OsMemIntegrityCheck(poolHead, &tmpNode, &preNode)) {
goto ERROR_OUT;
}
_MEM_UNLOCK(poolHead, intSave);
return LOS_OK;
ERROR_OUT:
OsMemIntegrityCheckError(poolHead, tmpNode, preNode, intSave);
return LOS_NOK;
}
STATIC INLINE VOID OsMemInfoGet(struct OsMemPoolHead *poolInfo, struct OsMemNodeHead *node,
LOS_MEM_POOL_STATUS *poolStatus)
{
UINT32 totalUsedSize = 0;
UINT32 totalFreeSize = 0;
UINT32 usedNodeNum = 0;
UINT32 freeNodeNum = 0;
UINT32 maxFreeSize = 0;
UINT32 size;
if (!OS_MEM_NODE_GET_USED_FLAG(node->sizeAndFlag)) {
size = OS_MEM_NODE_GET_SIZE(node->sizeAndFlag);
++freeNodeNum;
totalFreeSize += size;
if (maxFreeSize < size) {
maxFreeSize = size;
}
} else {
size = OS_MEM_NODE_GET_SIZE(node->sizeAndFlag);
++usedNodeNum;
totalUsedSize += size;
}
poolStatus->uwTotalUsedSize += totalUsedSize;
poolStatus->uwTotalFreeSize += totalFreeSize;
poolStatus->uwMaxFreeNodeSize = MAX(poolStatus->uwMaxFreeNodeSize, maxFreeSize);
poolStatus->uwUsedNodeNum += usedNodeNum;
poolStatus->uwFreeNodeNum += freeNodeNum;
}
UINT32 LOS_MemInfoGet(VOID *pool, LOS_MEM_POOL_STATUS *poolStatus)
{
struct OsMemPoolHead *poolInfo = pool;
if (poolStatus == NULL) {
PRINT_ERR("can't use NULL addr to save info\n");
return LOS_NOK;
}
if ((pool == NULL) || (poolInfo->info.pool != pool)) {
PRINT_ERR("wrong mem pool addr: %#x, line:%d\n", poolInfo, __LINE__);
return LOS_NOK;
}
struct OsMemNodeHead *tmpNode = NULL;
struct OsMemNodeHead *endNode = NULL;
UINT32 intSave;
_MEM_LOCK(poolInfo, intSave);
endNode = OS_MEM_END_NODE(pool, poolInfo->info.totalSize);
#if OS_MEM_EXPAND_ENABLE
UINT32 size;
for (tmpNode = OS_MEM_FIRST_NODE(pool); tmpNode <= endNode; tmpNode = OS_MEM_NEXT_NODE(tmpNode)) {
if (tmpNode == endNode) {
poolStatus->uwTotalUsedSize += OS_MEM_NODE_HEAD_SIZE;
poolStatus->uwUsedNodeNum++;
if (OsMemIsLastSentinelNode(endNode) == FALSE) {
size = OS_MEM_NODE_GET_SIZE(endNode->sizeAndFlag);
tmpNode = OsMemSentinelNodeGet(endNode);
endNode = OS_MEM_END_NODE(tmpNode, size);
continue;
} else {
break;
}
} else {
OsMemInfoGet(poolInfo, tmpNode, poolStatus);
}
}
#else
for (tmpNode = OS_MEM_FIRST_NODE(pool); tmpNode < endNode; tmpNode = OS_MEM_NEXT_NODE(tmpNode)) {
OsMemInfoGet(poolInfo, tmpNode, poolStatus);
}
#endif
#if defined(OS_MEM_WATERLINE) && (OS_MEM_WATERLINE == YES)
poolStatus->uwusageWaterLine = poolInfo->info.waterLine;
#endif
_MEM_UNLOCK(poolInfo, intSave);
return LOS_OK;
}
STATIC VOID OsMemInfoPrint(VOID *pool)
{
struct OsMemPoolHead *poolInfo = (struct OsMemPoolHead *)pool;
LOS_MEM_POOL_STATUS status = {0};
if (LOS_MemInfoGet(pool, &status) == LOS_NOK) {
return;
}
#if defined(OS_MEM_WATERLINE) && (OS_MEM_WATERLINE == YES)
PRINTK("pool addr pool size used size free size "
"max free node size used node num free node num UsageWaterLine\n");
PRINTK("--------------- -------- ------- -------- "
"-------------- ------------- ------------ ------------\n");
PRINTK("%-16#x 0x%-8x 0x%-8x 0x%-8x 0x%-16x 0x%-13x 0x%-13x 0x%-13x\n",
poolInfo->info.pool, LOS_MemPoolSizeGet(pool), status.uwTotalUsedSize,
status.uwTotalFreeSize, status.uwMaxFreeNodeSize, status.uwUsedNodeNum,
status.uwFreeNodeNum, status.uwusageWaterLine);
#else
PRINTK("pool addr pool size used size free size "
"max free node size used node num free node num\n");
PRINTK("--------------- -------- ------- -------- "
"-------------- ------------- ------------\n");
PRINTK("%-16#x 0x%-8x 0x%-8x 0x%-8x 0x%-16x 0x%-13x 0x%-13x\n",
poolInfo->info.pool, LOS_MemPoolSizeGet(pool), status.uwTotalUsedSize,
status.uwTotalFreeSize, status.uwMaxFreeNodeSize, status.uwUsedNodeNum,
status.uwFreeNodeNum);
#endif
}
UINT32 LOS_MemFreeNodeShow(VOID *pool)
{
struct OsMemPoolHead *poolInfo = (struct OsMemPoolHead *)pool;
if ((poolInfo == NULL) || ((UINTPTR)pool != (UINTPTR)poolInfo->info.pool)) {
PRINT_ERR("wrong mem pool addr: %#x, line:%d\n", poolInfo, __LINE__);
return LOS_NOK;
}
struct OsMemFreeNodeHead *node = NULL;
UINT32 countNum[OS_MEM_FREE_LIST_COUNT] = {0};
UINT32 index;
UINT32 intSave;
_MEM_LOCK(poolInfo, intSave);
for (index = 0; index < OS_MEM_FREE_LIST_COUNT; index++) {
node = poolInfo->freeList[index];
while (node) {
node = node->next;
countNum[index]++;
}
}
_MEM_UNLOCK(poolInfo, intSave);
PRINTK("\n ************************ left free node number**********************\n");
for (index = 0; index < OS_MEM_FREE_LIST_COUNT; index++) {
if (countNum[index] == 0) {
continue;
}
PRINTK("free index: %03u, ", index);
if (index < OS_MEM_SMALL_BUCKET_COUNT) {
PRINTK("size: [%#x], num: %u\n", (index + 1) << 2, countNum[index]); /* 2: setup is 4. */
} else {
UINT32 val = 1 << (((index - OS_MEM_SMALL_BUCKET_COUNT) >> OS_MEM_SLI) + OS_MEM_LARGE_START_BUCKET);
UINT32 offset = val >> OS_MEM_SLI;
PRINTK("size: [%#x, %#x], num: %u\n", (offset * ((index - OS_MEM_SMALL_BUCKET_COUNT) % (1 << OS_MEM_SLI))) + val,
((offset * (((index - OS_MEM_SMALL_BUCKET_COUNT) % (1 << OS_MEM_SLI)) + 1)) + val - 1), countNum[index]);
}
}
PRINTK("\n ********************************************************************\n\n");
return LOS_OK;
}
STATUS_T OsKHeapInit(size_t size)
{
STATUS_T ret;
VOID *ptr = NULL;
/*
* roundup to MB aligned in order to set kernel attributes. kernel text/code/data attributes
* should page mapping, remaining region should section mapping. so the boundary should be
* MB aligned.
*/
UINTPTR end = ROUNDUP(g_vmBootMemBase + size, MB);
size = end - g_vmBootMemBase;
ptr = OsVmBootMemAlloc(size);
if (!ptr) {
PRINT_ERR("vmm_kheap_init boot_alloc_mem failed! %d\n", size);
return -1;
}
m_aucSysMem0 = m_aucSysMem1 = ptr;
ret = LOS_MemInit(m_aucSysMem0, size);
if (ret != LOS_OK) {
PRINT_ERR("vmm_kheap_init LOS_MemInit failed!\n");
g_vmBootMemBase -= size;
return ret;
}
#if OS_MEM_EXPAND_ENABLE
LOS_MemExpandEnable(OS_SYS_MEM_ADDR);
#endif
return LOS_OK;
}
BOOL OsMemIsHeapNode(const VOID *ptr)
{
struct OsMemPoolHead *pool = (struct OsMemPoolHead *)m_aucSysMem1;
struct OsMemNodeHead *firstNode = OS_MEM_FIRST_NODE(pool);
struct OsMemNodeHead *endNode = OS_MEM_END_NODE(pool, pool->info.totalSize);
if (OS_MEM_MIDDLE_ADDR(firstNode, ptr, endNode)) {
return TRUE;
}
#if OS_MEM_EXPAND_ENABLE
UINT32 intSave;
UINT32 size;
_MEM_LOCK(pool, intSave);
while (OsMemIsLastSentinelNode(endNode) == FALSE) {
size = OS_MEM_NODE_GET_SIZE(endNode->sizeAndFlag);
firstNode = OsMemSentinelNodeGet(endNode);
endNode = OS_MEM_END_NODE(firstNode, size);
if (OS_MEM_MIDDLE_ADDR(firstNode, ptr, endNode)) {
_MEM_UNLOCK(pool, intSave);
return TRUE;
}
}
_MEM_UNLOCK(pool, intSave);
#endif
return FALSE;
}
UINT32 OsMemLargeNodeFree(const VOID *ptr)
{
LosVmPage *page = OsVmVaddrToPage((VOID *)ptr);
if ((page == NULL) || (page->nPages == 0)) {
return LOS_NOK;
}
LOS_PhysPagesFreeContiguous((VOID *)ptr, page->nPages);
return LOS_OK;
}
#ifdef __cplusplus
#if __cplusplus
}
#endif /* __cplusplus */
#endif /* __cplusplus */
到了这里,关于项目四 改进LiteOS中物理内存分配算法(未完待续)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!