【轮式移动机器人课程笔记 4】机器人可操作度和车轮类型

这篇具有很好参考价值的文章主要介绍了【轮式移动机器人课程笔记 4】机器人可操作度和车轮类型。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

L4 机器人可操作度和车轮类型

本讲主要包含三部分内容:

  • (1)复习上节课程中运动学相关知识
  • (2)讨论移动机器人可操作度
  • (3)讨论移动机器人的车轮类型

4.1 回顾轮式移动机器人运动学知识

具体详见 L3。

4.2 轮式移动机器人可操作度(degree of maneuverability)

  • 它是机动度(degree of mobility)和可转向度(degree of steerability)的总和
  • 它包括机器人直接通过轮速操纵的自由度,也包括它通过改变转向配置和移动间接操纵的自由度
  • 换句话说,他是可控输入的总数
  • 可操纵度取决于移动机器人的运动学配置和执行器布置

引入:公式的推导中变量为 w w w ,

陆基移动机器人的自由度是固定的:两个平移;一个旋转。可操纵度不是固定的,它取决于车轮的排列、主动轮的个数,通过可操纵度可以直接知道可控输入的总数。

比如,一个辆汽车,由前轮驱动,并且前轴可以由动力驱动转向,也就是该汽车可控输入数量是2。其中一个可控输入是提供车轮上的牵引力,即前向的平移,我们称它为移动性(mobility);另一个可控输入是转向驱动,我们称它为转向性( steerability )。

可操作度包括可移动度 (degree of mobility) 和 可转向度 (degree of steerability)。

  • 什么是可移动度 (degree of mobility) ?

通过一个例子来说明:一个底盘,上面安装有一个普通轮子(固定的标准轮),该轮子只能沿其旋转轴的方向(纵向)运行。给轮子加装一个电机,通过控制电机运行可以直接控制底盘运行速度。像这种,控制轮子转动能够使得底盘移动,这就是我们所说的可移动度(当然,可移动度是一个量词,后面会介绍如何计算)。

  • 什么是可转向度(degree of steerability)?

还是通过上面的例子来说明:上例中的轮子带有转向机构,因此在底盘运行过程中,因转向机构的存在,轮子的转动可分解为两个方向的运动,这也是导致转向的原因。类似这种,能够提供机器人转向的控制量的个数,我们称为可转向度。



==>问题引入,如何计算可操纵度?

通过以上内容我们简单了解了什么是可移动度与可转向度,也知道可操控度决定(体现)了控制量的个数。那可操纵度的数目由谁决定?


Degree of maneuverability:

Degree of maneuverability = Degree of mobility + Degree of steerability

δ M = δ m + δ s \delta_{M} = \delta_{m}+\delta_{s} δM=δm+δs (5)


这里给出可操纵度的计算公式:
δ M = δ m + δ s \delta_{M} = \delta_{m}+\delta_{s} δM=δm+δs
上式中: δ M : 可操纵度 \delta_{M}:可操纵度 δM:可操纵度

δ m : 可移动度 \delta_{m}: 可移动度 δm:可移动度

δ s : 可转向度 \delta_{s} : 可转向度 δs:可转向度

4.3 轮式移动机器人车轮类型


The known mobile robot kinematic model, as:

η ˙ = J ( ψ ) ζ \dot{\eta} = J(\psi)\zeta η˙=J(ψ)ζ

Based on wheel configuration

ζ = W w \zeta = Ww ζ=Ww (6)


ζ \zeta ζ 是输入的速度指令,根据轮子的配置,我们可以得出 ζ = W w \zeta = Ww ζ=Ww ,其中 w w w 为轮子的角速度向量, W W W 为轮子的配置矩阵。

本讲我们重点讲 w w w ,配置矩阵 W W W 后续课程中进行讲解。

【轮式移动机器人课程笔记 4】机器人可操作度和车轮类型,# 移动机器人课程笔记,机器人,轮式机器人,可操作度,车轮类型,可移动度,可转向度

【轮式移动机器人课程笔记 4】机器人可操作度和车轮类型,# 移动机器人课程笔记,机器人,轮式机器人,可操作度,车轮类型,可移动度,可转向度

如上图所示,即本课程中对不同轮子的表示。绿色 表示没有动力驱动,只是一个被动轮;红色 表示有动力的轮子。

4.4 轮式移动机器人可操作度计算示例

  • 例1: 如下图所示,该移动小车有两个有动力的固定轮,后面有一个被动球形脚轮,计算其可操作度。

【轮式移动机器人课程笔记 4】机器人可操作度和车轮类型,# 移动机器人课程笔记,机器人,轮式机器人,可操作度,车轮类型,可移动度,可转向度

根据我们 4.2 节 中所述,可操作度等于可移动度与可转向度的和。该例子中,两个固定轮分别能够提供纵向移动,因此其 可移动度 δ m = 2 \delta_{m} = 2 δm=2 ;两个固定论不能横向滚动(不含转向轴),而被动轮无法主动提供动力使得小车移动,因此 可转向度 δ s = 0 \delta_{s} = 0 δs=0 ; 根据计算公式得: δ M = δ m + δ s = 2 + 0 = 2 \delta_{M} = \delta_{m} + \delta_{s} = 2 + 0 = 2 δM=δm+δs=2+0=2

  • 例2:如下图所示,该移动小车由前轮驱动和转向,后面两个轮子为固定的被动轮,计算其可操作度。

【轮式移动机器人课程笔记 4】机器人可操作度和车轮类型,# 移动机器人课程笔记,机器人,轮式机器人,可操作度,车轮类型,可移动度,可转向度

根据我们 4.2 节 中所述,可操作度等于可移动度与可转向度的和。该例子中,两个固定轮为被动轮,不能提供移动度与转向度;前轮为驱动轮并可转向,因此其可提供的可移动度为 δ m = 1 \delta_{m} = 1 δm=1, 可转向度为 δ s = 1 \delta_s = 1 δs=1 ; 根据计算公式得: δ M = δ m + δ s = 1 + 1 = 2 \delta_{M} = \delta_{m} + \delta_{s} = 1 + 1 = 2 δM=δm+δs=1+1=2

  • 例3:如下图所示,该移动小车由3个固定的可驱动的全向轮,全向轮均无转向装置,计算其可操作度。

【轮式移动机器人课程笔记 4】机器人可操作度和车轮类型,# 移动机器人课程笔记,机器人,轮式机器人,可操作度,车轮类型,可移动度,可转向度

根据我们 4.2 节 中所述,可操作度等于可移动度与可转向度的和。该例子中,三个固定的可驱动的全向轮,因不含有转向,因此每个全向轮能够提供一个可移动度,不能提供可转向度(轮子不能主动的产生转向);因此其可提供的可移动度为 δ m = 1 + 1 + 1 = 3 \delta_{m} = 1+1+1=3 δm=1+1+1=3, 可转向度为 δ s = 0 + 0 + 0 = 0 \delta_s = 0+0+0=0 δs=0+0+0=0 ; 根据计算公式得: δ M = δ m + δ s = 3 + 0 = 3 \delta_{M} = \delta_{m} + \delta_{s} = 3 + 0 = 3 δM=δm+δs=3+0=3

例4:如下图所示,该移动小车由4个固定的可驱动的麦克纳姆轮,且均无转向装置,计算其可操作度。

【轮式移动机器人课程笔记 4】机器人可操作度和车轮类型,# 移动机器人课程笔记,机器人,轮式机器人,可操作度,车轮类型,可移动度,可转向度

根据我们 4.2 节 中所述,可操作度等于可移动度与可转向度的和。该例子中,四个固定的可驱动的麦克纳姆轮,因不含有转向,因此每个全向轮能够提供一个可移动度,不能提供可转向度(同上例中全向轮相同,没有转向装置轮子不能主动的产生转向);因此其可提供的可移动度为 δ m = 1 + 1 + 1 + 1 = 4 \delta_{m} = 1+1+1+1=4 δm=1+1+1+1=4, 可转向度为 δ s = 0 + 0 + 0 + 0 = 0 \delta_s = 0+0+0+0=0 δs=0+0+0+0=0 ; 根据计算公式得: δ M = δ m + δ s = 4 + 0 = 4 \delta_{M} = \delta_{m} + \delta_{s} = 4 + 0 = 4 δM=δm+δs=4+0=4

例5:如下图所示,该移动小车由4个固定的被动的脚轮,2个可驱动的转向轮,计算其可操作度。

【轮式移动机器人课程笔记 4】机器人可操作度和车轮类型,# 移动机器人课程笔记,机器人,轮式机器人,可操作度,车轮类型,可移动度,可转向度

根据我们 4.2 节 中所述,可操作度等于可移动度与可转向度的和。该例子中,四个固定轮为被动轮,不能提供移动度与转向度;两个带驱动的转向轮分别能提供的可移动度为 δ m = 1 \delta_{m} = 1 δm=1, 可转向度为 δ s = 1 \delta_s = 1 δs=1 ; 根据计算公式得: δ M = δ m + δ s = 1 ∗ 2 + 1 ∗ 2 = 4 \delta_{M} = \delta_{m} + \delta_{s} = 1*2 + 1*2 = 4 δM=δm+δs=12+12=4

4.5 其它说明

【轮式移动机器人课程笔记 4】机器人可操作度和车轮类型,# 移动机器人课程笔记,机器人,轮式机器人,可操作度,车轮类型,可移动度,可转向度

注 ∗ 注^* :上图中右侧图像所代表的轮子类型依次是:

  • Active fixed wheel (主动固定轮)
  • Passive fixed wheel (被动固定轮)
  • Passive caster wheel (被动脚轮)
  • Mecanum wheel (麦克纳姆轮)
  • Omni-directional wheel (全向轮)
  • Steerable or orientabel wheel (可操控轮或转向轮)
  • Active fixed steerable wheel (主动式固定转向轮)
  • 主动轮一般用纯色填充(如上图中的蓝色);

  • 被动轮或脚轮一般用绿色填充;

  • 麦克纳姆轮用斜线刨面线表示;

  • 全向轮是用黑点和空白点填充的阴影来表示

  • Steerable or orientabel wheel 上面有一个轴



*再对可操作度进行说明

问题:到底什么是可操作度?

可操作度就是可控输入的数量。

看以下两个例子:

示例一:一个自行车模型,前轮驱动,同时前轮可驱动转向。其可操作度为: δ m = 1 , δ s = 1 , δ M = 1 + 1 = 2 \delta_m = 1, \delta_s = 1, \delta_M = 1+1 =2 δm=1,δs=1,δM=1+1=2

示例二:一个自行车模型,前轮驱动转向,后轮驱动行进。其可操作度为: δ m = 1 , δ s = 1 , δ M = 1 + 1 = 2 \delta_m = 1, \delta_s = 1, \delta_M = 1+1 =2 δm=1,δs=1,δM=1+1=2

两个例子中,可操作度均为2,有什么区别呢?

两个示例中,自行车模型均有一个动力、一个转向,区别就在于转向和动力是否是分开的。

示例三: 一个三轮自行车,后轮为驱动轮,前轮为驱动转向轮,但后面两个轮子为同轴的,不能独立驱动。其可操作度为: δ m = 1 , δ s = 1 , δ M = 1 + 1 = 2 \delta_m = 1, \delta_s = 1, \delta_M = 1+1 =2 δm=1,δs=1,δM=1+1=2


对于轮胎类型和可操作度放在一起介绍,其实为了说明看图示的轮胎(或实际的轮胎)就能知道轮胎是否有驱动,是否有驱动转向,通过驱动及驱动转向就能知道其可操作度是多少。


本节完文章来源地址https://www.toymoban.com/news/detail-773336.html

到了这里,关于【轮式移动机器人课程笔记 4】机器人可操作度和车轮类型的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • [足式机器人]Part5 机械设计 Ch00/01 绪论+机器结构组成与连接 ——【课程笔记】

    本文仅供学习使用 本文参考: 《机械设计》 王德伦 马雅丽 课件与日常作业可登录网址 http://edu.bell-lab.com/manage/#/login ,选择观摩登录,查看 2023机械设计2 。 机械设计 Machines Design ,在传统课程中,更倾向于 机械零件设计 Machine Elements Design :预期 装置 (运动/结构)与 性能

    2024年02月12日
    浏览(55)
  • [足式机器人]Part4 机械设计 Ch00/01 绪论+机器结构组成与连接 ——【课程笔记】

    本文仅供学习使用 本文参考: 《机械设计》 王德伦 马雅丽 课件与日常作业可登录网址 http://edu.bell-lab.com/manage/#/login ,选择观摩登录,查看 2023机械设计2 。 机械设计 Machines Design ,在传统课程中,更倾向于 机械零件设计 Machine Elements Design :预期 装置 (运动/结构)与 性能

    2024年02月13日
    浏览(44)
  • 【深蓝学院】移动机器人运动规划--第5章 最优轨迹生成--笔记

    Ch2讲了基于搜索的路径规划方法,Ch3讲了基于采样的路径规划方法,这些都是global methods,框架都是Exploration and Exploitation,且在算力足够大的情况下,一定能够找到全局最优解。 除了global methods,还有local methods,主要是Deterministic Optimization确定性优化。基于优化的方法,主要

    2024年02月19日
    浏览(37)
  • 【深蓝学院】移动机器人运动规划--第2章 基于搜索的路径规划--笔记

    Configuration Space等概念 机器人配置: 指机器人位置和所有点的表示。 DOF: 指用于表示机器人配置所需的最小的实数坐标的数量n。 C-space: 包含机器人n维所有配置的空间。 在C-space中机器人的pose是一个点。 机器人在C-space中被表示为一个点,pose包含为R,t 空间中的障碍物也需要映

    2024年01月22日
    浏览(40)
  • 移动机器人 | 火星探矿机器人

    “火星探矿机器人”旨在要开发若干个自主机器人,将其送到火星上去搜寻和采集火星上的矿产资源。 火星环境对于开发者和自主机器人而言事先不可知,但是可以想象火星表面会有多样化的地形情况,如河流、巨石、凹坑等,机器人在运动过程中会遇到各种障碍; 另外,火

    2024年02月06日
    浏览(39)
  • 移动机器人农田机器人全覆盖路径规划

    鉴于目前网上对于全覆盖路径规划方面的资料比较少,本次博客内容主要分享下拖拉机在农田里面作业的路径规划,以及轨迹优化。 目录 1. 什么是全覆盖路径规划 2. 实用案例 3. 农田作业机器人 如何获取地图 如何规划出全覆盖的路径 如何确保规划出来的路径是符合车辆动力

    2024年01月25日
    浏览(43)
  • 【机器人模拟-02】 模拟移动机器人设置里程计

            在本教程中,我将向您展示如何设置移动机器人的测程。本教程是“机器人模拟”指南中的第二个教程。测量位移是仿真中的重要内容,设置测程的官方教程在此页面上,但我将逐步引导您完成整个过程。         您可以在此处获取此项目的完整代码。让我们

    2024年02月16日
    浏览(37)
  • 【机器人模拟-01】使用URDF在中创建模拟移动机器人

            在本教程中,我将向您展示如何使用 通用机器人描述格式 (URDF)(机器人 建模的标准 ROS 格式)创建模拟移动机器人。         机器人专家喜欢在构建机器人之前对其进行模拟,以测试不同的算法。您可以想象,使用物理机器人犯错的成本可能很高(例如,

    2024年02月16日
    浏览(44)
  • ROS实现机器人移动

    使用是github上六合机器人工坊的项目。 https://github.com/6-robot/wpr_simulation.git 运动模型如下所示:👇   机器人运动的消息包: 实现思路:👇   为什么要使用/cmd_vel话题。因为这个是约定俗成的,项目中订阅的就是这个话题,否则无法订阅到主题或者更改项目的订阅者的源码

    2024年02月14日
    浏览(37)
  • 机器人工程创新类课程补充说明-2023-

    内容仅供参考,不严谨。 案例: 在f1tenth仿真中如何实现更快速的跑圈-曲线分析篇  所有课程其实 主动权永远都掌握在学生手中 ,愿意学的会多花时间自主研究(主动学习),不愿意的就会用一些独特手段应付(被动学习),这些其实都是学生的自主选择,一定要尊重学生

    2024年02月11日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包