【数学建模】《实战数学建模:例题与讲解》第十讲-时间序列预测(含Matlab代码)

这篇具有很好参考价值的文章主要介绍了【数学建模】《实战数学建模:例题与讲解》第十讲-时间序列预测(含Matlab代码)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本系列侧重于例题实战与讲解,希望能够在例题中理解相应技巧。文章开头相关基础知识只是进行简单回顾,读者可以搭配课本或其他博客了解相应章节,然后进入本文例题实战,效果更佳。

如果这篇文章对你有帮助,欢迎点赞与收藏~
【数学建模】《实战数学建模:例题与讲解》第十讲-时间序列预测(含Matlab代码),数学建模,数学建模,matlab,开发语言

基本概念

时间序列预测是一种预测方法,它通过将观察对象按照时间顺序排列,构成一个所谓的“时间序列”。通过分析这些时间序列过去的变化规律,可以推断未来的可能变化、趋势和规律。这种方法实际上是一种回归模型,其基本原理有两个方面:一是承认事物发展的延续性,即通过分析过去时间序列的数据来预测事物的发展趋势;二是考虑到偶然因素的影响所带来的随机性。为了减少随机波动的影响,需要利用历史数据进行统计分析,并对数据进行适当处理以进行趋势预测。

时间序列预测法的优点在于其简单易行,易于掌握,能够充分利用原时间序列的数据,计算速度快,并且对模型参数具有动态确定的能力。此外,精度较高,特别是当采用组合时间序列或将时间序列与其他模型组合时,其效果更佳。然而,这种方法也有其局限性,主要是不能反映事物的内在联系,无法分析两个因素之间的相关关系,更适用于短期而非长期预测。

时间序列预测法在各个领域都有广泛的应用,如在金融市场分析、气象预测、工业生产和库存管理等领域。在实际应用中,时间序列预测通常涉及到多种技术和方法,如移动平均、指数平滑法、季节性调整、自回归移动平均模型(ARMA)、自回归积分滑动平均模型(ARIMA)等。这些技术各有特点,适用于不同类型的数据和不同的预测需求。

移动平均(Moving Average, MA):

特点: 简单、直观。
原理: 根据一定数量的连续过去数据点的平均值来预测未来的值。它有助于平滑时间序列中的短期波动,并突出长期趋势。
适用性: 最适合没有明显趋势和季节性的数据。

指数平滑法(Exponential Smoothing):

特点: 对最近的观测值给予更多的权重。
原理: 这种方法给过去的观测值赋予指数递减的权重,最近的数据点有更大的权重。简单指数平滑适用于没有趋势和季节性的数据,而双重和三重指数平滑法可以处理趋势和季节性。
适用性: 适用于具有或不具有趋势和季节性的数据。

季节性调整(Seasonal Adjustment):

特点: 专注于季节性因素。
原理: 通过消除季节性波动来更清晰地识别趋势。这通常是通过识别并调整那些周期性重复出现的模式来完成的。
适用性: 对于具有明显季节性模式的数据特别有效。

自回归移动平均模型(ARMA):

特点: 结合自回归(AR)和移动平均(MA)。
原理: AR部分利用过去值之间的关系,而MA部分则建模时间序列的误差项。这种模型假设时间序列是平稳的(即均值、方差和协方差不随时间变化)。
适用性: 适合处理平稳的时间序列。

自回归积分滑动平均模型(ARIMA):

特点: ARMA模型的扩展,可以处理非平稳数据。
原理: 结合差分(使非平稳数据平稳)的概念与ARMA模型。它通过一定次数的差分,将非平稳时间序列转化为平稳时间序列。
适用性: 可以处理非平稳时间序列,适合广泛类型的时间序列数据。

习题8.4

1. 题目要求

【数学建模】《实战数学建模:例题与讲解》第十讲-时间序列预测(含Matlab代码),数学建模,数学建模,matlab,开发语言

【数学建模】《实战数学建模:例题与讲解》第十讲-时间序列预测(含Matlab代码),数学建模,数学建模,matlab,开发语言

2.解题过程

解:

原始数据序列: x t {x_t} xt ,一阶差分变换后的序列为: y t y_t yt

(1)通过下文中程序的运行,我们可以从运行结果中得到
y t = 1.253 y t − 1 − 0.3522 y t − 2 + ε t + 0.5022 ε t − 1 y_t = 1.253y_{t-1} - 0.3522y_{t-2} + \varepsilon_{t} + 0.5022 \varepsilon_{t-1} yt=1.253yt10.3522yt2+εt+0.5022εt1
(2)根据下文的运算结果得到未来10年的预测值分别为::
6419.44740352031 6668.77039934881 6861.19145947359 7014.42501092823 7138.60914121919 7240.20495400936 7323.73568451267 7392.59199500092 7449.42827658915 7496.37548147182 6419.44740352031 \\ 6668.77039934881\\ 6861.19145947359\\ 7014.42501092823\\ 7138.60914121919\\ 7240.20495400936\\ 7323.73568451267\\ 7392.59199500092\\ 7449.42827658915\\ 7496.37548147182 6419.447403520316668.770399348816861.191459473597014.425010928237138.609141219197240.204954009367323.735684512677392.591995000927449.428276589157496.37548147182

3.程序

求解的MATLAB程序如下:

clc, clear
format long g

% 定义列向量 xt,其中包含了原始数据的时间序列。
xt = [119, 142, 144, 150, 165, 168, 200, ...
    216, 218, 185, 173, 181, 208, 240, 254, ...
    235, 222, 243, 275, 288, 292, 309, 310, 327, ...
    316, 339, 379, 417, 460, 489, 525, 580, 682, ...
    853, 956, 1104, 1355, 1512, 1634, 1879, ...
    2287, 2939, 3923, 4854, 5576, 6079]';

% 进行一阶差分变换,即计算 xt 中相邻元素之间的差值,生成一个新的列向量 yt
% 一阶差分变换可以将非平稳时间序列转换为平稳时间序列。
yt = diff(xt);

% 拟合arma模型
m = armax(yt, [2, 1])
% armax函数接受两个参数:时间序列数据和模型阶数[p,q],其中p是自回归项的数量,q是滞后误差项的数量

% 计算yt的10期预测值
ythat = forecast(m, yt, 10);

% 计算原始数据的10期预测值
% 这一行代码用于计算原始数据 xt 的预测值
% xt(end)表示原始数据的最后一个观测值,cumsum(ythat)表示将ythat中每个元素累加得到的新的列向量
xthat = xt(end) + cumsum(ythat)

4.结果

【数学建模】《实战数学建模:例题与讲解》第十讲-时间序列预测(含Matlab代码),数学建模,数学建模,matlab,开发语言

(1)我们可以从运行结果中得到
y t = 1.253 y t − 1 − 0.3522 y t − 2 + ε t + 0.5022 ε t − 1 y_t = 1.253y_{t-1} - 0.3522y_{t-2} + \varepsilon_{t} + 0.5022 \varepsilon_{t-1} yt=1.253yt10.3522yt2+εt+0.5022εt1
(2)未来10年的预测值分别为::
6419.44740352031 6668.77039934881 6861.19145947359 7014.42501092823 7138.60914121919 7240.20495400936 7323.73568451267 7392.59199500092 7449.42827658915 7496.37548147182 6419.44740352031 \\ 6668.77039934881\\ 6861.19145947359\\ 7014.42501092823\\ 7138.60914121919\\ 7240.20495400936\\ 7323.73568451267\\ 7392.59199500092\\ 7449.42827658915\\ 7496.37548147182 6419.447403520316668.770399348816861.191459473597014.425010928237138.609141219197240.204954009367323.735684512677392.591995000927449.428276589157496.37548147182

习题8.5

1. 题目要求

【数学建模】《实战数学建模:例题与讲解》第十讲-时间序列预测(含Matlab代码),数学建模,数学建模,matlab,开发语言

2.解题过程

解:

(1)序列时序图

记原始序列为 { x t {x_t} xt} ,序列时序图如下图所示,时序图显示该序列大致具有12个周期变化,周期的长度为9或10年,下面使用周期 T=10行计算。

【数学建模】《实战数学建模:例题与讲解》第十讲-时间序列预测(含Matlab代码),数学建模,数学建模,matlab,开发语言

(2)差分平稳

对原序列做10步差分,消除季节趋势,得到序列 { y t y_t yt} ,其中, y t = x t + 10 − x t y_t = x_{t+10}-x_t yt=xt+10xt,差分后序列图如下图所示。时序图显示差分后序列基本平稳了。

【数学建模】《实战数学建模:例题与讲解》第十讲-时间序列预测(含Matlab代码),数学建模,数学建模,matlab,开发语言

(3)模型拟合

根据差分后序列的自相关和偏自相关的性质,尝试拟合ARMA模型,拟合的ARMA (1,10) 模型较理想,并且通过了白噪声检验,说明低阶的ARMA模型不适合拟合这个序列。

【数学建模】《实战数学建模:例题与讲解》第十讲-时间序列预测(含Matlab代码),数学建模,数学建模,matlab,开发语言【数学建模】《实战数学建模:例题与讲解》第十讲-时间序列预测(含Matlab代码),数学建模,数学建模,matlab,开发语言

(4)

求预测值。求得下两个年度的预测值为4310和3674。

3.程序

求解的MATLAB程序如下:

clc, clear
format long g

a = [269, 321, 585, 871, 1475, 2821, 3928, 5943, 4950, ...
    2577, 523, 98, 184, 279, 409, 2285, 2685, 3409, 1824, ...
    409, 151, 45, 68, 213, 546, 1033, 2129, 2536, 957, ...
    361, 377, 225, 360, 731, 1638, 2725, 2871, 2119, 684, ...
    299, 236, 245, 552, 1623, 3311, 6721, 4254, 687, 255, ...
    473, 358, 784, 1594, 1676, 2251, 1426, 756, 299, 201, ...
    229, 469, 736, 2042, 2811, 4431, 2511, 389, 73, 39, 49, ...
    59, 188, 377, 1292, 4031, 3495, 537, 105, 153, 387, 758, ...
    1307, 3465, 6991, 6313, 3794, 1836, 345, 382, 808, ...
    1388, 2713, 3800, 309, 2985, 3790, 674, 71, 80, 108, ...
    229, 399, 1132, 2432, 3575, 2935, 1537, 529, 485, 662, ...
    1000, 1520, 2657, 3396]';

n = length(a);
% 用MATLAB的plot函数绘制a的图像
plot(a, '.-')

% 使用for循环遍历从第11个到最后一个数据元素,并对前10个数据元素和当前数据元素进行差分计算得到一个新的列向量b
for i = 11:n
    b(i-10) = a(i) - a(i-10); % 进行季节差分变换
end
b = b';
figure, plot(b, '.-')

% 计算b的自相关性和偏自相关性
figure, subplot(121), autocorr(b)
subplot(122), parcorr(b)
% 对b序列进行模型拟合
cs = armax(b, [1, 10]); % 拟合模型
figure, myres = resid(cs, b); % 计算残差向量并画出残差的自相关函数图
% 拟合模型的残差向量myres
[h, p, st] = lbqtest(myres.outputdata, 'lags', [6, 12, 18]); % 进行LBQ检验
% 注意,上面outputdata一定要加上,不然会报错

bhat = forecast(cs, b, 2); % 计算b的2期预测值
ahat = a(end-9:end-8) + bhat % 求原始序列的2期预测值

4.结果

【数学建模】《实战数学建模:例题与讲解》第十讲-时间序列预测(含Matlab代码),数学建模,数学建模,matlab,开发语言

后两个年度的预测值为4310和3674

习题8.6

1. 题目要求

【数学建模】《实战数学建模:例题与讲解》第十讲-时间序列预测(含Matlab代码),数学建模,数学建模,matlab,开发语言

2.解题过程

解:

(1)对所给时间序列建模

首先对此序列进行观察分析。下图为数据曲线图:

【数学建模】《实战数学建模:例题与讲解》第十讲-时间序列预测(含Matlab代码),数学建模,数学建模,matlab,开发语言

可以看出具有指数上升趋势,因此,对确定性部分先拟合一个指数增长模型,即
X t = μ t + Y t , μ t = R 1 e r 1 t X_t = \mu_t + Y_t, \mu_t = R_1e^{r_1t} Xt=μt+Yt,μt=R1er1t
这里各季节依次编号为 t = 1 , 2 , … , 100 t = 1,2,\dots,100 t=1,2,,100

然后确定性趋势的拟合。为了能用线性最小二乘法估计参数 R 1 R_1 R1 r 1 r_1 r1, μ t = R 1 e r 1 t \mu_t = R_1 e^{r_1t} μt=R1er1t两边取对数,得:
ln ⁡ μ t = ln ⁡ R 1 + r 1 t \ln \mu_t = \ln R_1 + r_1t lnμt=lnR1+r1t
利用观测数据求得 R ^ 1 = 12.6385 , r ^ 1 \hat{R}_1 = 12.6385,\hat{r}_1 R^1=12.6385,r^1 = 0.0162。剩余平方和为1683.5371。剩余序列 Y t Y_t Yt如下图所示,可以认为是平稳的:

【数学建模】《实战数学建模:例题与讲解》第十讲-时间序列预测(含Matlab代码),数学建模,数学建模,matlab,开发语言

对剩余序列拟合ARMA模型。 Y t Y_t Yt自相关与偏自相关如下图所示:

【数学建模】《实战数学建模:例题与讲解》第十讲-时间序列预测(含Matlab代码),数学建模,数学建模,matlab,开发语言【数学建模】《实战数学建模:例题与讲解》第十讲-时间序列预测(含Matlab代码),数学建模,数学建模,matlab,开发语言

可初步断定 Y t Y_t Yt的适应模型为AR模型,逐增加AR模型阶数进行拟合,其残差方差图如下图所示:

【数学建模】《实战数学建模:例题与讲解》第十讲-时间序列预测(含Matlab代码),数学建模,数学建模,matlab,开发语言

因此,合适的模型为AR (2),即
Y t = φ 1 Y t − 1 + φ 2 Y t − 2 + a t Y_t = \varphi_1Y_{t-1}+\varphi_2Y_{t-2} + a_t Yt=φ1Yt1+φ2Yt2+at
参数估计为 φ ^ 1 = 0.5451 , φ ^ 2 = 0.2478 \hat{\varphi}_1 = 0.5451,\hat{\varphi}_2 = 0.2478 φ^1=0.5451,φ^2=0.2478

建立组合模型。最后要以已估计出来的 R 1 , r 1 , φ 1 , φ 2 R_1,r_1,\varphi_1,\varphi_2 R1,r1,φ1,φ2的值为初始值用非线性最小二乘法对模型参数进行整体估计,模型整体可写为
X t = μ t + Y t = R 1 e r 1 t + φ 1 ( X t − 1 − R 1 e r 1 ( t − 1 ) ) + φ 2 ( X t − 2 ) − R 1 e r 1 ( t − 2 ) + a t X_t = \mu_t + Y_t = R_1e^{r_1t} + \varphi_1(X_{t-1}-R_1e^{r_1(t-1)} )+\varphi_2(X_{t-2})-R_1e^{r_1(t-2)}+a_t Xt=μt+Yt=R1er1t+φ1(Xt1R1er1(t1))+φ2(Xt2)R1er1(t2)+at
最终的参数整体估计为
R ^ 1 = 12.1089 , r ^ 1 = 0.017 , φ ^ 1 = 0.517 , φ ^ 2 = 0.2397 \hat{R}_1=12.1089,\hat{r}_1=0.017,\hat{\varphi}_1 = 0.517, \hat{\varphi}_2 = 0.2397 R^1=12.1089,r^1=0.017,φ^1=0.517,φ^2=0.2397
残差平方和为739.4402。

(2)

对所给的时间序列进行两年(8个季度)的预报。用所建的模型以1970年第4几度即t = 100为原点进行预测,结果如下表所示。

l 0 1 2 3 4 5 6 7 8
t+l t t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8
X ^ t ( l ) \hat{X}_t(l) X^t(l) 62.1 65.8298 66.8384 68.562 70.0083 71.4879 72.9238 74.3507 75.768

3.程序

(1)

求解的MATLAB程序如下:

clc, clear

% 将数据按照每年的每个季度依次写入
a = [7.5, 8.9, 11.1, 13.4, 15.5, 15.7, 15.6, 16.7, 18, 17.4, 17.9, ...
    18.8, 17.6, 17, 16.1, 15.7, 15.9, 17.9, 20.3, 20.4, 20.2, 20.5, ...
    20.9, 20.9, 21.1, 21.4, 18.2, 20.1, 21.4, 21.3, 21.9, 21.3, ...
    20.4, 20.4, 20.7, 20.7, 20.9, 23, 24.9, 26.5, 25.6, 26.1, 27, ...
    27.2, 28.1, 28, 29.1, 28.3, 25.7, 24.5, 24.4, 25.5, 27, 28.7, ...
    29.1, 29, 29.6, 31.2, 30.6, 29.8, 27.6, 27.7, 29, 30.3, 31, 32.1, ...
    33.5, 33.2, 33.2, 33.8, 35.5, 36.8, 37.9, 39, 41, 41.6, 43.7, ...
    44.4, 46.6, 48.3, 50.2, 52.1, 54, 56, 53.9, 55.6, 55.4, 56.2, ...
    57.9, 57.3, 58.8, 60.4, 63.1, 83.5, 64.8, 65.7, 64.8, 65.6, 67.2, 62.1]';

n = length(a);
t0 = [46:1 / 4:71 - 1 / 4];
t = [1:100]';
xishu = [ones(n, 1), t];
cs = xishu \ log(a)
cs(1) = exp(cs(1))
ahat = cs(1) * exp(cs(2)*t);
cha = a - ahat
res = sum(cha.^2)
subplot(121), plot(t0, a, '*-')
subplot(122), plot(t0, cha, '.-')
figure, subplot(121), autocorr(cha)
subplot(122), parcorr(cha)
for i = 1:10
    cs2 = ar(cha, i);
    cha2 = resid(cs2, cha);
    myvar(i) = sum(cha2.outputdata.^2) / (100 - i);
end
figure, plot(myvar, '*-')

(2)

求解的MATLAB程序如下:

clc, clear

% 定义一个函数句柄 xt,它的输入参数是一个向量 cs 和一个矩阵 x。 
% x 矩阵的第一列是 a 向量的第二个元素到倒数第二个元素,第二列是 a 向量的第一个元素到倒数第三个元素,
% 第三列是一个列向量,它包含数字3到100
% 这些数字将用于预测未来的季度。
% 函数的输出是一个向量,表示用于预测季度的预测值。
xt = @(cs, x)cs(1) * (exp(cs(2)*x(:, 3)) - cs(3) * exp(cs(2)*(x(:, 3) - 1)) - ...
    cs(4) * exp(cs(2)*(x(:, 3) - 2))) + cs(3) * x(:, 1) + cs(4) * x(:, 2);
cs0 = [12.6385, 0.0162, 0.5451, 0.2478]';

% 将数据按照每年的每个季度依次写入
a = [7.5, 8.9, 11.1, 13.4, 15.5, 15.7, 15.6, 16.7, 18, 17.4, 17.9, ...
    18.8, 17.6, 17, 16.1, 15.7, 15.9, 17.9, 20.3, 20.4, 20.2, 20.5, ...
    20.9, 20.9, 21.1, 21.4, 18.2, 20.1, 21.4, 21.3, 21.9, 21.3, ...
    20.4, 20.4, 20.7, 20.7, 20.9, 23, 24.9, 26.5, 25.6, 26.1, 27, ...
    27.2, 28.1, 28, 29.1, 28.3, 25.7, 24.5, 24.4, 25.5, 27, 28.7, ...
    29.1, 29, 29.6, 31.2, 30.6, 29.8, 27.6, 27.7, 29, 30.3, 31, 32.1, ...
    33.5, 33.2, 33.2, 33.8, 35.5, 36.8, 37.9, 39, 41, 41.6, 43.7, ...
    44.4, 46.6, 48.3, 50.2, 52.1, 54, 56, 53.9, 55.6, 55.4, 56.2, ...
    57.9, 57.3, 58.8, 60.4, 63.1, 83.5, 64.8, 65.7, 64.8, 65.6, 67.2, 62.1]';

% 创建一个矩阵 x,包含3列,用于作为函数 xt 的输入参数
% 第一列是 a 向量的第二个元素到倒数第二个元素,第二列是 a 向量的第一个元素到倒数第三个元素,
% 第三列是一个列向量,它包含数字3到100,这些数字将用于预测未来的季度
x = [a(2:end-1), a(1:end-2), [3:100]'];
cs = lsqcurvefit(xt, cs0, x, a(3:end))
res = a(3:end) - xt(cs, x);
Q = sum(res.^2)
autocorr(res)
xhat = a;

for j = 101:108
    xhat(j) = cs(1) * (exp(cs(2)*j) - cs(3) * exp(cs(2)*(j - 1)) - ...
        cs(4) * exp(cs(2)*(j - 2))) + cs(3) * xhat(j-1) + cs(4) * xhat(j-2);
end

xhat101_108 = xhat(101:108)

4.结果

(1)结果见上文解题过程

(2)

【数学建模】《实战数学建模:例题与讲解》第十讲-时间序列预测(含Matlab代码),数学建模,数学建模,matlab,开发语言

l 0 1 2 3 4 5 6 7 8
t+l t t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8
X ^ t ( l ) \hat{X}_t(l) X^t(l) 62.1 65.8298 66.8384 68.562 70.0083 71.4879 72.9238 74.3507 75.768

如果这篇文章对你有帮助,欢迎点赞与收藏~文章来源地址https://www.toymoban.com/news/detail-773474.html

到了这里,关于【数学建模】《实战数学建模:例题与讲解》第十讲-时间序列预测(含Matlab代码)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【数学建模】《实战数学建模:例题与讲解》第七讲-Bootstrap方法(含Matlab代码)

    如果这篇文章对你有帮助,欢迎点赞与收藏~ Bootstrap方法是一种统计技术,用于估计一个样本统计量的分布(例如均值、中位数或标准偏差)。它通过从原始数据集中重复抽取样本(通常是带替换的)来工作,允许评估统计量的变异性和不确定性。这种方法特别有用于小样本

    2024年01月22日
    浏览(50)
  • 【数学建模】《实战数学建模:例题与讲解》第四讲-插值与拟合(含Matlab代码)

    如果这篇文章对你有帮助,欢迎点赞与收藏~ 在实际问题中,对于给定的函数 y = f(x) ,通常通过实验观测在某个区间 [a, b] 上一系列点 x_i 上的函数值 y_i = f(x_i) 得到。当需要在这些观测点 x_0, x_1, ..., x_n 之间的某些点 x 上估计函数值时,插值法和拟合是两种常用的数学方法。

    2024年02月05日
    浏览(51)
  • 【数学建模】《实战数学建模:例题与讲解》第二讲-线性规划(含Matlab代码)

    如果这篇文章对你有帮助,欢迎点赞与收藏~ 线性规划(Linear Programming,LP)是一种在数学规划领域中应用广泛的最优化问题解决方法。其基本思想是在一系列约束条件下,通过建立线性数学模型来描述目标函数,以求得使目标函数最大或最小的决策变量值。线性规划在运筹学

    2024年02月04日
    浏览(49)
  • 【数学建模笔记】【第十讲(2)】聚类模型之:系统(层次)聚类及spss实现

    系统(层次)聚类解决了K-均值聚类的一个最大的问题:聚类的个数需要自己给定。 系统聚类的合并算法通过计算两类数据点间的距离,对最为接近的两类数据点进行组合,并反复迭代这一过程,直到将所有数据 点合成一类,并生成 聚类谱系图 。我们可以根据这个图来确定

    2024年02月12日
    浏览(38)
  • 【数学建模】经典简单例题实例1

    例1 某人平时下班总是按预定时间到达某处,然然后他妻子开车接他回家。有一天,他比平时提早了三十分钟到达该处,于是此人就沿着他朋友来接他的方向步行回去并在途中遇到了她,这一天,他比 平时 提前了十分钟到家,问此人共步行了多长时间? 该问题求解涉及到对

    2023年04月21日
    浏览(42)
  • 数学建模 | 第一章 线性规划例题

    例1.1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为 4000 元与 3000 元。生产甲机床需用A、B机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用A、B、C三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A机器10小时、B机器8小时和

    2024年02月03日
    浏览(46)
  • 【完整解析】第十二届“认证杯”数学中国数学建模国际赛(小美赛)A题

    A题 太阳黑子预报(Sunspot Forecasting) 完整版解题思路 完整版解题思路 太阳黑子是太阳光球上的一种现象,表现为比周围区域更暗的临时斑点。它们是由于磁通量集中而导致表面温度降低的区域,磁通量的集中抑制了对流。太阳黑子出现在活跃区域内,通常成对出现,磁极相

    2024年01月25日
    浏览(45)
  • 2023第十五届电工杯数学建模AB题思路模型

    (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor “中国电机工程学会杯”全国大学生电工数学建模竞赛已成功举办十四届,累计参赛高校千余所,参赛学生近10万人,是目前国内最具影响力、显著提高学生创新意识和综合素质的大学生竞赛项目之一。“中国电机

    2024年02月11日
    浏览(41)
  • 2023第十三届MathorCup高校数学建模挑战赛C题解析

    C 题 电商物流网络包裹应急调运与结构优化问题 电商物流网络由物流场地(接货仓、分拣中心、营业部等)和物流场地之间的运输线路组成,如图 1 所示。受节假日和“双十一”、“618”等促销活动的影响,电商用户的下单量会发生显著波动,而疫情、地震等突发事件导致物

    2023年04月22日
    浏览(63)
  • 第十六届“华中杯”大学生数学建模挑战赛C题思路

    光纤传感技术是伴随着光纤及光通信技术发展起来的一种新型传感器技术。它是以光波为传感信号、光纤为传输载体来感知外界环境中的信号,其基本原理是当外界环境参数发生变化时,会引起光纤传感器中光波参量(如波长、相位、强度等)的变化,即外界信号变化会对光

    2024年04月25日
    浏览(32)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包