作者推荐
【动态规划】【广度优先】LeetCode2258:逃离火灾
本文涉及的基础知识点
区间合并
题目
给你一个下标从 0 开始、由 正整数 组成的数组 nums。
将数组分割成一个或多个 连续 子数组,如果不存在包含了相同数字的两个子数组,则认为是一种 好分割方案 。
返回 nums 的 好分割方案 的 数目。
由于答案可能很大,请返回答案对 109 + 7 取余 的结果。
示例 1:
输入:nums = [1,2,3,4]
输出:8
解释:有 8 种 好分割方案 :([1], [2], [3], [4]), ([1], [2], [3,4]), ([1], [2,3], [4]), ([1], [2,3,4]), ([1,2], [3], [4]), ([1,2], [3,4]), ([1,2,3], [4]) 和 ([1,2,3,4]) 。
示例 2:
输入:nums = [1,1,1,1]
输出:1
解释:唯一的 好分割方案 是:([1,1,1,1]) 。
示例 3:
输入:nums = [1,2,1,3]
输出:2
解释:有 2 种 好分割方案 :([1,2,1], [3]) 和 ([1,2,1,3]) 。
参数范围:
1 <= nums.length <= 105
1 <= nums[i] <= 109
区间合并
时间复杂度: O(nlogn)
分析
如果存在两个相同的数,则两者必须在同一个子数组。比如:{1,2,1,3},不能像这样分:
一,{1},{2,1,3}
二,{1,2},{1,3}
假定有数组中x有两个或更多,第一个的索引是xi1,最后一个的索引是xi2。在区间[xi1,xi2)处不能被拆分。
如果y也存在2个或更多,且yi1 > xi1,如果yi1 <= xi2,则两个区间合并成[xi1,max(xi2,yi2)]。
处了区间[xi1,xi2] 的[xi1,xi2)共有(xi2-xi1)位不能分块外,其它都可以拆分。
总共有n-1个位置,可以拆分,扣掉各区间不能拆分的位置,假定有m个位置可以拆分,则结果是2m。
代码
核心代码
template<int MOD = 1000000007>
class C1097Int
{
public:
C1097Int(long long llData = 0) :m_iData(llData% MOD)
{
}
C1097Int operator+(const C1097Int& o)const
{
return C1097Int(((long long)m_iData + o.m_iData) % MOD);
}
C1097Int& operator+=(const C1097Int& o)
{
m_iData = ((long long)m_iData + o.m_iData) % MOD;
return *this;
}
C1097Int& operator-=(const C1097Int& o)
{
m_iData = (m_iData + MOD - o.m_iData) % MOD;
return *this;
}
C1097Int operator-(const C1097Int& o)
{
return C1097Int((m_iData + MOD - o.m_iData) % MOD);
}
C1097Int operator*(const C1097Int& o)const
{
return((long long)m_iData * o.m_iData) % MOD;
}
C1097Int& operator*=(const C1097Int& o)
{
m_iData = ((long long)m_iData * o.m_iData) % MOD;
return *this;
}
bool operator<(const C1097Int& o)const
{
return m_iData < o.m_iData;
}
C1097Int pow(long long n)const
{
C1097Int iRet = 1, iCur = *this;
while (n)
{
if (n & 1)
{
iRet *= iCur;
}
iCur *= iCur;
n >>= 1;
}
return iRet;
}
C1097Int PowNegative1()const
{
return pow(MOD - 2);
}
int ToInt()const
{
return m_iData;
}
private:
int m_iData = 0;;
};
class Solution {
public:
int numberOfGoodPartitions(vector<int>& nums) {
m_c = nums.size();
std::map<int, int> mLeftRight;
{
std::unordered_map<int, std::pair<int, int>> mValueToFirstEnd;
for (int i = 0; i < m_c; i++)
{
if (!mValueToFirstEnd.count(nums[i]))
{
mValueToFirstEnd[nums[i]] = std::make_pair(i, i);
}
else
{
mValueToFirstEnd[nums[i]].second = i;
}
}
for (const auto& [tmp, it] : mValueToFirstEnd)
{
mLeftRight[it.first] = it.second;
}
}
vector<std::pair<int, int>> vLeftRight;
for (auto it = mLeftRight.begin(); it != mLeftRight.end(); ++it)
{
int iRight = it->second;
auto ij = std::next(it);
while ( (mLeftRight.end() != ij) && (ij->first <= iRight))
{
iRight = max(iRight, ij->second);
ij++;
}
mLeftRight.erase(std::next(it), ij);
vLeftRight.emplace_back(it->first, iRight);
}
int iCanSplitPos = m_c - 1;
for (const auto& [left,right] : vLeftRight)
{
iCanSplitPos -= right - left;
}
return C1097Int<>(2).pow(iCanSplitPos).ToInt();
}
int m_c;
};
测试用例
template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
if (v1.size() != v2.size())
{
assert(false);
return;
}
for (int i = 0; i < v1.size(); i++)
{
assert(v1[i] == v2[i]);
}
}
template<class T>
void Assert(const T& t1, const T& t2)
{
assert(t1 == t2);
}
int main()
{
Solution slu;
vector<int> nums;
int k;
{
Solution slu;
nums = { 2, 4, 7, 1, 2 };
auto res = slu.numberOfGoodPartitions(nums);
Assert(1, res);
}
{
Solution slu;
nums = { 1,2,1,3 };
auto res = slu.numberOfGoodPartitions(nums);
Assert(2,res );
}
{
Solution slu;
nums = { 1,1,1,1 };
auto res = slu.numberOfGoodPartitions(nums);
Assert(1, res);
}
}
优化
最后的循环,可以删除。
class Solution {
public:
int numberOfGoodPartitions(vector& nums) {
m_c = nums.size();
std::map<int, int> mLeftRight;
{
std::unordered_map<int, std::pair<int, int>> mValueToFirstEnd;
for (int i = 0; i < m_c; i++)
{
if (!mValueToFirstEnd.count(nums[i]))
{
mValueToFirstEnd[nums[i]] = std::make_pair(i, i);
}
else
{
mValueToFirstEnd[nums[i]].second = i;
}
}
for (const auto& [tmp, it] : mValueToFirstEnd)
{
mLeftRight[it.first] = it.second;
}
}
int iCanSplitPos = m_c - 1;
for (auto it = mLeftRight.begin(); it != mLeftRight.end(); ++it)
{
int iRight = it->second;
auto ij = std::next(it);
while ( (mLeftRight.end() != ij) && (ij->first <= iRight))
{
iRight = max(iRight, ij->second);
ij++;
}
mLeftRight.erase(std::next(it), ij);
iCanSplitPos -= iRight - it->first;
}
return C1097Int<>(2).pow(iCanSplitPos).ToInt();
}
int m_c;
};
旧代码
template
class C1097Int
{
public:
C1097Int(long long llData = 0) :m_iData(llData% MOD)
{
}
C1097Int operator+(const C1097Int& o)const
{
return C1097Int(((long long)m_iData + o.m_iData) % MOD);
}
C1097Int& operator+=(const C1097Int& o)
{
m_iData = ((long long)m_iData + o.m_iData) % MOD;
return *this;
}
C1097Int& operator-=(const C1097Int& o)
{
m_iData = (m_iData + MOD - o.m_iData) % MOD;
return *this;
}
C1097Int operator-(const C1097Int& o)
{
return C1097Int((m_iData + MOD - o.m_iData) % MOD);
}
C1097Int operator*(const C1097Int& o)const
{
return((long long)m_iData * o.m_iData) % MOD;
}
C1097Int& operator*=(const C1097Int& o)
{
m_iData = ((long long)m_iData * o.m_iData) % MOD;
return *this;
}
bool operator<(const C1097Int& o)const
{
return m_iData < o.m_iData;
}
C1097Int pow(long long n)const
{
C1097Int iRet = 1, iCur = *this;
while (n)
{
if (n & 1)
{
iRet *= iCur;
}
iCur *= iCur;
n >>= 1;
}
return iRet;
}
C1097Int PowNegative1()const
{
return pow(MOD - 2);
}
int ToInt()const
{
return m_iData;
}
private:
int m_iData = 0;;
};
class Solution {
public:
int numberOfGoodPartitions(vector& nums) {
m_c = nums.size();
std::map<int, int> mLeftRight;
{
std::unordered_map<int, std::pair<int, int>> mValueToFirstEnd;
for (int i = 0; i < m_c; i++)
{
if (!mValueToFirstEnd.count(nums[i]))
{
mValueToFirstEnd[nums[i]] = std::make_pair(i, i);
}
else
{
mValueToFirstEnd[nums[i]].second = i;
}
}
for (const auto& [tmp, it] : mValueToFirstEnd)
{
mLeftRight[it.first] = it.second;
}
}
vector<std::pair<int, int>> vLeftRight;
vLeftRight.emplace_back(0, 0);
for (auto it = mLeftRight.begin(); it != mLeftRight.end(); ++it)
{
int iRight = it->second;
auto ij = std::next(it);
while ( (mLeftRight.end() != ij) && (ij->first <= iRight))
{
iRight = max(iRight, ij->second);
ij++;
}
mLeftRight.erase(std::next(it), ij);
vLeftRight.emplace_back(it->first, iRight);
}
vLeftRight.emplace_back(m_c-1, m_c-1);
C1097Int<> biRet = 1;
for (int i = 1; i < vLeftRight.size(); i++)
{
C1097Int<> biTmp = 2;
biRet *= biTmp.pow(vLeftRight[i].first - vLeftRight[i - 1].second);
}
return biRet.ToInt();
}
int m_c;
};
扩展阅读
视频课程
有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快
速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176
相关下载
想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653
我想对大家说的话 |
---|
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。 |
子墨子言之:事无终始,无务多业 |
。也就是我们常说的专业的人做专业的事。 |
|如果程序是一条龙,那算法就是他的是睛|
测试环境
操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境:
VS2022 C++17文章来源:https://www.toymoban.com/news/detail-773508.html
文章来源地址https://www.toymoban.com/news/detail-773508.html
到了这里,关于区间合并|LeetCode2963:统计好分割方案的数目的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!