以下内容收集也不完整,无法涵盖视觉 SLAM 的所有研究,也欢迎大家有好的方案欢迎留言或者私信。
1 开源方案
1.1 Geometric SLAM (26项)
这一类是传统的基于特征点、直接法或半直接法的几何 SLAM。
1. PTAM
- 论文:Klein G, Murray D. Parallel tracking and mapping for small AR workspaces[C]//Mixed and Augmented Reality, 2007. ISMAR 2007. 6th IEEE and ACM International Symposium on. IEEE, 2007: 225-234.
- 代码:https://github.com/Oxford-PTAM/PTAM-GPL
- 工程地址:http://www.robots.ox.ac.uk/~gk/PTAM/
- 作者其他研究:http://www.robots.ox.ac.uk/~gk/publications.html
2. S-PTAM(双目 PTAM)
- 论文:Taihú Pire,Thomas Fischer, Gastón Castro, Pablo De Cristóforis, Javier Civera and Julio Jacobo Berlles. S-PTAM: Stereo Parallel Tracking and Mapping. Robotics and Autonomous Systems, 2017.
- 代码:https://github.com/lrse/sptam
- 作者其他论文:Castro G, Nitsche M A, Pire T, et al. Efficient on-board Stereo SLAM through constrained-covisibility strategies[J]. Robotics and Autonomous Systems, 2019.
3. MonoSLAM
- 论文:Davison A J, Reid I D, Molton N D, et al. MonoSLAM: Real-time single camera SLAM[J]. IEEE transactions on pattern analysis and machine intelligence, 2007, 29(6): 1052-1067.
- 代码:https://github.com/hanmekim/SceneLib2
4. ORB-SLAM2
- 论文:Mur-Artal R, Tardós J D. Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras[J]. IEEE Transactions on Robotics, 2017, 33(5): 1255-1262.
- 代码:https://github.com/raulmur/ORB_SLAM2
- 作者其他论文:
- 单目半稠密建图:Mur-Artal R, Tardós J D. Probabilistic Semi-Dense Mapping from Highly Accurate Feature-Based Monocular SLAM[C]//Robotics: Science and Systems. 2015, 2015.
- VIORB:Mur-Artal R, Tardós J D. Visual-inertial monocular SLAM with map reuse[J]. IEEE Robotics and Automation Letters, 2017, 2(2): 796-803.
- 多地图:Elvira R, Tardós J D, Montiel J M M. ORBSLAM-Atlas: a robust and accurate multi-map system[J]. arXiv preprint arXiv:1908.11585, 2019.
以下5, 6, 7, 8几项是 TUM 计算机视觉组全家桶,官方主页:https://vision.in.tum.de/research/vslam/dso
5. DSO
- 论文:Engel J, Koltun V, Cremers D. Direct sparse odometry[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 40(3): 611-625.
- 代码:https://github.com/JakobEngel/dso
- 双目 DSO:Wang R, Schworer M, Cremers D. Stereo DSO: Large-scale direct sparse visual odometry with stereo cameras[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 3903-3911.
- VI-DSO:Von Stumberg L, Usenko V, Cremers D. Direct sparse visual-inertial odometry using dynamic marginalization[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018: 2510-2517.
6. LDSO
- 高翔在 DSO 上添加闭环的工作
- 论文:Gao X, Wang R, Demmel N, et al. LDSO: Direct sparse odometry with loop closure[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 2198-2204.
- 代码:https://github.com/tum-vision/LDSO
7. LSD-SLAM
- 论文:Engel J, Schöps T, Cremers D. LSD-SLAM: Large-scale direct monocular SLAM[C]//European conference on computer vision. Springer, Cham, 2014: 834-849.
- 代码:https://github.com/tum-vision/lsd_slam
8. DVO-SLAM
- 论文:Kerl C, Sturm J, Cremers D. Dense visual SLAM for RGB-D cameras[C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2013: 2100-2106.
- 代码 1:https://github.com/tum-vision/dvo_slam
- 代码 2:https://github.com/tum-vision/dvo
- 其他论文:
- Kerl C, Sturm J, Cremers D. Robust odometry estimation for RGB-D cameras[C]//2013 IEEE international conference on robotics and automation. IEEE, 2013: 3748-3754.
- Steinbrücker F, Sturm J, Cremers D. Real-time visual odometry from dense RGB-D images[C]//2011 IEEE international conference on computer vision workshops (ICCV Workshops). IEEE, 2011: 719-722.
9. SVO
- 苏黎世大学机器人与感知课题组
- 论文:Forster C, Pizzoli M, Scaramuzza D. SVO: Fast semi-direct monocular visual odometry[C]//2014 IEEE international conference on robotics and automation (ICRA). IEEE, 2014: 15-22.
- 代码:https://github.com/uzh-rpg/rpg_svo
- Forster C, Zhang Z, Gassner M, et al. SVO: Semidirect visual odometry for monocular and multicamera systems[J]. IEEE Transactions on Robotics, 2016, 33(2): 249-265.
10. DSM
- 论文:Zubizarreta J, Aguinaga I, Montiel J M M. Direct sparse mapping[J]. arXiv preprint arXiv:1904.06577, 2019.
- 代码:https://github.com/jzubizarreta/dsm ;Video
11. openvslam
- 论文:Sumikura S, Shibuya M, Sakurada K. OpenVSLAM: A Versatile Visual SLAM Framework[C]//Proceedings of the 27th ACM International Conference on Multimedia. 2019: 2292-2295.
- 代码:https://github.com/xdspacelab/openvslam ;文档
12. se2lam(地面车辆位姿估计的视觉里程计)
- 论文:Zheng F, Liu Y H. Visual-Odometric Localization and Mapping for Ground Vehicles Using SE (2)-XYZ Constraints[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 3556-3562.
- 代码:https://github.com/izhengfan/se2lam
- 作者的另外一项工作
- 论文:Zheng F, Tang H, Liu Y H. Odometry-vision-based ground vehicle motion estimation with se (2)-constrained se (3) poses[J]. IEEE transactions on cybernetics, 2018, 49(7): 2652-2663.
- 代码:https://github.com/izhengfan/se2clam
13. GraphSfM(基于图的并行大规模 SFM)
- 论文:Chen Y, Shen S, Chen Y, et al. Graph-Based Parallel Large Scale Structure from Motion[J]. arXiv preprint arXiv:1912.10659, 2019.
- 代码:https://github.com/AIBluefisher/GraphSfM
14. LCSD_SLAM(松耦合的半直接法单目 SLAM)
- 论文:Lee S H, Civera J. Loosely-Coupled semi-direct monocular SLAM[J]. IEEE Robotics and Automation Letters, 2018, 4(2): 399-406.
- 代码:https://github.com/sunghoon031/LCSD_SLAM ;谷歌学术 ;演示视频
- 作者另外一篇关于单目尺度的文章 代码开源 :Lee S H, de Croon G. Stability-based scale estimation for monocular SLAM[J]. IEEE Robotics and Automation Letters, 2018, 3(2): 780-787.
15. RESLAM(基于边的 SLAM)
- 论文:Schenk F, Fraundorfer F. RESLAM: A real-time robust edge-based SLAM system[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 154-160.
- 代码:https://github.com/fabianschenk/RESLAM ; 项目主页
16. scale_optimization(将单目 DSO 拓展到双目)
- 论文:Mo J, Sattar J. Extending Monocular Visual Odometry to Stereo Camera System by Scale Optimization[C]. International Conference on Intelligent Robots and Systems (IROS), 2019.
- 代码:https://github.com/jiawei-mo/scale_optimization
17. BAD-SLAM(直接法 RGB-D SLAM)
- 论文:Schops T, Sattler T, Pollefeys M. BAD SLAM: Bundle Adjusted Direct RGB-D SLAM[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 134-144.
- 代码:https://github.com/ETH3D/badslam
18. GSLAM(集成 ORB-SLAM2,DSO,SVO 的通用框架)
- 论文:Zhao Y, Xu S, Bu S, et al. GSLAM: A general SLAM framework and benchmark[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 1110-1120.
- 代码:https://github.com/zdzhaoyong/GSLAM
19. ARM-VO(运行于 ARM 处理器上的单目 VO)
- 论文:Nejad Z Z, Ahmadabadian A H. ARM-VO: an efficient monocular visual odometry for ground vehicles on ARM CPUs[J]. Machine Vision and Applications, 2019: 1-10.
- 代码:https://github.com/zanazakaryaie/ARM-VO
20. cvo-rgbd(直接法 RGB-D VO)
- 论文:Ghaffari M, Clark W, Bloch A, et al. Continuous Direct Sparse Visual Odometry from RGB-D Images[J]. arXiv preprint arXiv:1904.02266, 2019.
- 代码:https://github.com/MaaniGhaffari/cvo-rgbd
21. Map2DFusion(单目 SLAM 无人机图像拼接)
- 论文:Bu S, Zhao Y, Wan G, et al. Map2DFusion: Real-time incremental UAV image mosaicing based on monocular slam[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2016: 4564-4571.
- 代码:https://github.com/zdzhaoyong/Map2DFusion
22. CCM-SLAM(多机器人协同单目 SLAM)
- 论文:Schmuck P, Chli M. CCM‐SLAM: Robust and efficient centralized collaborative monocular simultaneous localization and mapping for robotic teams[J]. Journal of Field Robotics, 2019, 36(4): 763-781.
- 代码:https://github.com/VIS4ROB-lab/ccm_slam Video
23. ORB-SLAM3
- 论文:Carlos Campos, Richard Elvira, et al.ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial and Multi-Map SLAM[J]. arXiv preprint arXiv:2007.11898, 2020.
- 代码:https://github.com/UZ-SLAMLab/ORB_SLAM3 | Video
24. OV²SLAM(完全实时在线多功能 SLAM)
- 论文:Ferrera M, Eudes A, Moras J, et al. OV $^{2} $ SLAM: A Fully Online and Versatile Visual SLAM for Real-Time Applications[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 1399-1406.
- 代码:https://github.com/ov2slam/ov2slam
25. ESVO(基于事件的双目视觉里程计)
- 论文:Zhou Y, Gallego G, Shen S. Event-based stereo visual odometry[J]. IEEE Transactions on Robotics, 2021.
- 代码:https://github.com/HKUST-Aerial-Robotics/ESVO
26. VOLDOR-SLAM(实时稠密非直接法 SLAM)
- 论文:Min Z, Dunn E. VOLDOR-SLAM: For the Times When Feature-Based or Direct Methods Are Not Good Enough[J]. arXiv preprint arXiv:2104.06800, 2021.
- 代码:https://github.com/htkseason/VOLDOR
1.2 Semantic / Deep SLAM (17项)
SLAM 与深度学习相结合的工作当前主要体现在两个方面,一方面是将语义信息参与到建图、位姿估计等环节中,另一方面是端到端地完成 SLAM
的某一个步骤(比如 VO,闭环等)。
1. MsakFusion
- 论文:Runz M, Buffier M, Agapito L. Maskfusion: Real-time recognition, tracking and reconstruction of multiple moving objects[C]//2018 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). IEEE, 2018: 10-20.
- 代码:https://github.com/martinruenz/maskfusion
2. SemanticFusion
- 论文:McCormac J, Handa A, Davison A, et al. Semanticfusion: Dense 3d semantic mapping with convolutional neural networks[C]//2017 IEEE International Conference on Robotics and automation (ICRA). IEEE, 2017: 4628-4635.
- 代码:https://github.com/seaun163/semanticfusion
3. semantic_3d_mapping
- 论文:Yang S, Huang Y, Scherer S. Semantic 3D occupancy mapping through efficient high order CRFs[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017: 590-597.
- 代码:https://github.com/shichaoy/semantic_3d_mapping
4. Kimera(实时度量与语义定位建图开源库)
- 论文:Rosinol A, Abate M, Chang Y, et al. Kimera: an Open-Source Library for Real-Time Metric-Semantic Localization and Mapping[J]. arXiv preprint arXiv:1910.02490, 2019.
- 代码:https://github.com/MIT-SPARK/Kimera ;演示视频
5. NeuroSLAM(脑启发式 SLAM)
- 论文:Yu F, Shang J, Hu Y, et al. NeuroSLAM: a brain-inspired SLAM system for 3D environments[J]. Biological Cybernetics, 2019: 1-31.
- 代码:https://github.com/cognav/NeuroSLAM
- 第四作者就是 Rat SLAM 的作者,文章也比较了十余种脑启发式的 SLAM
6. gradSLAM(自动分区的稠密 SLAM)
- 论文:Jatavallabhula K M, Iyer G, Paull L. gradSLAM: Dense SLAM meets Automatic Differentiation[J]. arXiv preprint arXiv:1910.10672, 2019.
- 代码(预计 20 年 4 月放出):https://github.com/montrealrobotics/gradSLAM ;项目主页,演示视频
7. ORB-SLAM2 + 目标检测/分割的方案语义建图
- https://github.com/floatlazer/semantic_slam
- https://github.com/qixuxiang/orb-slam2_with_semantic_labelling
- https://github.com/Ewenwan/ORB_SLAM2_SSD_Semantic
8. SIVO(语义辅助特征选择)
- 论文:Ganti P, Waslander S. Network Uncertainty Informed Semantic Feature Selection for Visual SLAM[C]//2019 16th Conference on Computer and Robot Vision (CRV). IEEE, 2019: 121-128.
- 代码:https://github.com/navganti/SIVO
9. FILD(临近图增量式闭环检测)
- 论文:Shan An, Guangfu Che, Fangru Zhou, Xianglong Liu, Xin Ma, Yu Chen. Fast and Incremental Loop Closure Detection using Proximity Graphs. pp. 378-385, The 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2019)
- 代码:https://github.com/AnshanTJU/FILD
10. object-detection-sptam(目标检测与双目 SLAM)
- 论文:Pire T, Corti J, Grinblat G. Online Object Detection and Localization on Stereo Visual SLAM System[J]. Journal of Intelligent & Robotic Systems, 2019: 1-10.
- 代码:https://github.com/CIFASIS/object-detection-sptam
11. Map Slammer(单目深度估计 + SLAM)
- 论文:Torres-Camara J M, Escalona F, Gomez-Donoso F, et al. Map Slammer: Densifying Scattered KSLAM 3D Maps with Estimated Depth[C]//Iberian Robotics conference. Springer, Cham, 2019: 563-574.
- 代码:https://github.com/jmtc7/mapSlammer
12. NOLBO(变分模型的概率 SLAM)
- 论文:Yu H, Lee B. Not Only Look But Observe: Variational Observation Model of Scene-Level 3D Multi-Object Understanding for Probabilistic SLAM[J]. arXiv preprint arXiv:1907.09760, 2019.
- 代码:https://github.com/bogus2000/NOLBO
13. GCNv2_SLAM (基于图卷积神经网络 SLAM)
- 论文:Tang J, Ericson L, Folkesson J, et al. GCNv2: Efficient correspondence prediction for real-time SLAM[J]. IEEE Robotics and Automation Letters, 2019, 4(4): 3505-3512.
- 代码:https://github.com/jiexiong2016/GCNv2_SLAM Video
14. semantic_suma(激光语义建图)
- 论文:Chen X, Milioto A, Palazzolo E, et al. SuMa++: Efficient LiDAR-based semantic SLAM[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019: 4530-4537.
- 代码:https://github.com/PRBonn/semantic_suma/ ;Video
15. Neural-SLAM(主动神经 SLAM)
- 论文:Chaplot D S, Gandhi D, Gupta S, et al. Learning to explore using active neural slam[C]. ICLR 2020.
- 代码:https://github.com/devendrachaplot/Neural-SLAM
16. TartanVO:一种通用的基于学习的 VO
- 论文:Wang W, Hu Y, Scherer S. TartanVO: A Generalizable Learning-based VO[J]. arXiv preprint arXiv:2011.00359, 2020.
- 代码:https://github.com/castacks/tartanvo
- 数据集:IROS2020 TartanAir: A Dataset to Push the Limits of Visual SLAM,数据集地址
17. DF-VO
-
论文:Zhan H, Weerasekera C S, Bian J W, et al. DF-VO: What Should Be Learnt for Visual Odometry?[J]. arXiv preprint arXiv:2103.00933, 2021.
- Zhan H, Weerasekera C S, Bian J W, et al. Visual odometry revisited: What should be learnt?[C]//2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020: 4203-4210.
- 代码:https://github.com/Huangying-Zhan/DF-VO
1.3 Multi-Landmarks / Object SLAM (15项)
多路标的点、线、平面 SLAM 和物体级 SLAM
1. PL-SVO(点线 SVO)
- 论文:Gomez-Ojeda R, Briales J, Gonzalez-Jimenez J. PL-SVO: Semi-direct Monocular Visual Odometry by combining points and line segments[C]//Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on. IEEE, 2016: 4211-4216.
- 代码:https://github.com/rubengooj/pl-svo
2. stvo-pl(双目点线 VO)
- 论文:Gomez-Ojeda R, Gonzalez-Jimenez J. Robust stereo visual odometry through a probabilistic combination of points and line segments[C]//2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2016: 2521-2526.
- 代码:https://github.com/rubengooj/stvo-pl
3. PL-SLAM(点线 SLAM)
- 论文:Gomez-Ojeda R, Zuñiga-Noël D, Moreno F A, et al. PL-SLAM: a Stereo SLAM System through the Combination of Points and Line Segments[J]. arXiv preprint arXiv:1705.09479, 2017.
- 代码:https://github.com/rubengooj/pl-slam
- Gomez-Ojeda R, Moreno F A, Zuñiga-Noël D, et al. PL-SLAM: a stereo SLAM system through the combination of points and line segments[J]. IEEE Transactions on Robotics, 2019, 35(3): 734-746.
4. PL-VIO
- 论文:He Y, Zhao J, Guo Y, et al. PL-VIO: Tightly-coupled monocular visual–inertial odometry using point and line features[J]. Sensors, 2018, 18(4): 1159.
- 代码:https://github.com/HeYijia/PL-VIO
- VINS + 线段:https://github.com/Jichao-Peng/VINS-Mono-Optimization
5. lld-slam(用于 SLAM 的可学习型线段描述符)
- 论文:Vakhitov A, Lempitsky V. Learnable line segment descriptor for visual SLAM[J]. IEEE Access, 2019, 7: 39923-39934.
- 代码:https://github.com/alexandervakhitov/lld-slam ;Video
点线结合的工作还有很多,国内的比如
- 上交邹丹平老师的 Zou D, Wu Y, Pei L, et al. StructVIO: visual-inertial odometry with structural regularity of man-made environments[J]. IEEE Transactions on Robotics, 2019, 35(4): 999-1013.
- 浙大的 Zuo X, Xie X, Liu Y, et al. Robust visual SLAM with point and line features[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017: 1775-1782.
6. PlaneSLAM
- 论文:Wietrzykowski J. On the representation of planes for efficient graph-based slam with high-level features[J]. Journal of Automation Mobile Robotics and Intelligent Systems, 2016, 10.
- 代码:https://github.com/LRMPUT/PlaneSLAM
- 作者另外一项开源代码,没有找到对应的论文:https://github.com/LRMPUT/PUTSLAM
7. Eigen-Factors(特征因子平面对齐)
- 论文:Ferrer G. Eigen-Factors: Plane Estimation for Multi-Frame and Time-Continuous Point Cloud Alignment[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019: 1278-1284.
- 代码:https://gitlab.com/gferrer/eigen-factors-iros2019 ;演示视频
8. PlaneLoc
- 论文:Wietrzykowski J, Skrzypczyński P. PlaneLoc: Probabilistic global localization in 3-D using local planar features[J]. Robotics and Autonomous Systems, 2019, 113: 160-173.
- 代码:https://github.com/LRMPUT/PlaneLoc
9. Pop-up SLAM
- 论文:Yang S, Song Y, Kaess M, et al. Pop-up slam: Semantic monocular plane slam for low-texture environments[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2016: 1222-1229.
- 代码:https://github.com/shichaoy/pop_up_slam
10. Object SLAM
- 论文:Mu B, Liu S Y, Paull L, et al. Slam with objects using a nonparametric pose graph[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2016: 4602-4609.
- 代码:https://github.com/BeipengMu/objectSLAM ;Video
11. voxblox-plusplus(物体级体素建图)
- 论文:Grinvald M, Furrer F, Novkovic T, et al. Volumetric instance-aware semantic mapping and 3D object discovery[J]. IEEE Robotics and Automation Letters, 2019, 4(3): 3037-3044.
- 代码:https://github.com/ethz-asl/voxblox-plusplus
12. Cube SLAM
- 论文:Yang S, Scherer S. Cubeslam: Monocular 3-d object slam[J]. IEEE Transactions on Robotics, 2019, 35(4): 925-938.
-
代码:https://github.com/shichaoy/cube_slam
+对 Cube SLAM 的一些注释和总结:链接。 - 也有很多有意思的但没开源的物体级 SLAM
- Ok K, Liu K, Frey K, et al. Robust Object-based SLAM for High-speed Autonomous Navigation[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 669-675.
- Li J, Meger D, Dudek G. Semantic Mapping for View-Invariant Relocalization[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 7108-7115.
- Nicholson L, Milford M, Sünderhauf N. Quadricslam: Dual quadrics from object detections as landmarks in object-oriented slam[J]. IEEE Robotics and Automation Letters, 2018, 4(1): 1-8.
13. VPS-SLAM(平面语义 SLAM)
- 论文:Bavle H, De La Puente P, How J, et al. VPS-SLAM: Visual Planar Semantic SLAM for Aerial Robotic Systems[J]. IEEE Access, 2020.
- 代码:https://bitbucket.org/hridaybavle/semantic_slam/src/master/
14. Structure-SLAM (低纹理环境下点线 SLAM)
- 论文:Li Y, Brasch N, Wang Y, et al. Structure-SLAM: Low-Drift Monocular SLAM in Indoor Environments[J]. IEEE Robotics and Automation Letters, 2020, 5(4): 6583-6590.
- 代码:https://github.com/yanyan-li/Structure-SLAM-PointLine
15. PL-VINS
- 论文:Fu Q, Wang J, Yu H, et al. PL-VINS: Real-Time Monocular Visual-Inertial SLAM with Point and Line[J]. arXiv preprint arXiv:2009.07462, 2020.
- 代码:https://github.com/cnqiangfu/PL-VINS
1.4 Sensor Fusion (23项)
在传感器融合方面只关注了视觉 + 惯导,其他传感器像 LiDAR,GPS。
1. msckf_vio
- 论文:Sun K, Mohta K, Pfrommer B, et al. Robust stereo visual inertial odometry for fast autonomous flight[J]. IEEE Robotics and Automation Letters, 2018, 3(2): 965-972.
- 代码:https://github.com/KumarRobotics/msckf_vio ;Video
2. rovio
- 论文:Bloesch M, Omari S, Hutter M, et al. Robust visual inertial odometry using a direct EKF-based approach[C]//2015 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, 2015: 298-304.
- 代码:https://github.com/ethz-asl/rovio ;Video
3. R-VIO
- 论文:Huai Z, Huang G. Robocentric visual-inertial odometry[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 6319-6326.
- 代码:https://github.com/rpng/R-VIO ;Video
- VI_ORB_SLAM2:https://github.com/YoujieXia/VI_ORB_SLAM2
4. okvis
- 论文:Leutenegger S, Lynen S, Bosse M, et al. Keyframe-based visual–inertial odometry using nonlinear optimization[J]. The International Journal of Robotics Research, 2015, 34(3): 314-334.
- 代码:https://github.com/ethz-asl/okvis
5. VIORB
- 论文:Mur-Artal R, Tardós J D. Visual-inertial monocular SLAM with map reuse[J]. IEEE Robotics and Automation Letters, 2017, 2(2): 796-803.
- 代码:https://github.com/jingpang/LearnVIORB (VIORB 本身是没有开源的,这是王京大佬复现的一个版本)
6. VINS-mono
- 论文:Qin T, Li P, Shen S. Vins-mono: A robust and versatile monocular visual-inertial state estimator[J]. IEEE Transactions on Robotics, 2018, 34(4): 1004-1020.
- 代码:https://github.com/HKUST-Aerial-Robotics/VINS-Mono
- 双目版 VINS-Fusion:https://github.com/HKUST-Aerial-Robotics/VINS-Fusion
- 移动段 VINS-mobile:https://github.com/HKUST-Aerial-Robotics/VINS-Mobile
7. VINS-RGBD
- 论文:Shan Z, Li R, Schwertfeger S. RGBD-Inertial Trajectory Estimation and Mapping for Ground Robots[J]. Sensors, 2019, 19(10): 2251.
- 代码:https://github.com/STAR-Center/VINS-RGBD ;Video
8. Open-VINS
- 论文:Geneva P, Eckenhoff K, Lee W, et al. Openvins: A research platform for visual-inertial estimation[C]//IROS 2019 Workshop on Visual-Inertial Navigation: Challenges and Applications, Macau, China. IROS 2019.
- 代码:https://github.com/rpng/open_vins
9. versavis(多功能的视惯传感器系统)
- 论文:Tschopp F, Riner M, Fehr M, et al. VersaVIS—An Open Versatile Multi-Camera Visual-Inertial Sensor Suite[J]. Sensors, 2020, 20(5): 1439.
- 代码:https://github.com/ethz-asl/versavis
10. CPI(视惯融合的封闭式预积分)
- 论文:Eckenhoff K, Geneva P, Huang G. Closed-form preintegration methods for graph-based visual–inertial navigation[J]. The International Journal of Robotics Research, 2018.
- 代码:https://github.com/rpng/cpi ;Video
11. TUM Basalt
- 论文:Usenko V, Demmel N, Schubert D, et al. Visual-inertial mapping with non-linear factor recovery[J]. IEEE Robotics and Automation Letters, 2019.
- 代码:https://github.com/VladyslavUsenko/basalt-mirror ;Video;Project Page
12. Limo(激光单目视觉里程计)
- 论文:Graeter J, Wilczynski A, Lauer M. Limo: Lidar-monocular visual odometry[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 7872-7879.
- 代码:https://github.com/johannes-graeter/limo ; Video
13. LARVIO(多状态约束卡尔曼滤波的单目 VIO)
- 论文:Qiu X, Zhang H, Fu W, et al. Monocular Visual-Inertial Odometry with an Unbiased Linear System Model and Robust Feature Tracking Front-End[J]. Sensors, 2019, 19(8): 1941.
- 代码:https://github.com/PetWorm/LARVIO
- 北航邱笑晨博士的一项工作
14. vig-init(垂直边缘加速视惯初始化)
- 论文:Li J, Bao H, Zhang G. Rapid and Robust Monocular Visual-Inertial Initialization with Gravity Estimation via Vertical Edges[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019: 6230-6236.
- 代码:https://github.com/zju3dv/vig-init
- 浙大章国峰老师组的一项工作
15. vilib(VIO 前端库)
- 论文:Nagy B, Foehn P, Scaramuzza D. Faster than FAST: GPU-Accelerated Frontend for High-Speed VIO[J]. arXiv preprint arXiv:2003.13493, 2020.
- 代码:https://github.com/uzh-rpg/vilib
16. Kimera-VIO
- 论文:A. Rosinol, M. Abate, Y. Chang, L. Carlone, Kimera: an Open-Source Library for Real-Time Metric-Semantic Localization and Mapping. IEEE Intl. Conf. on Robotics and Automation (ICRA), 2020.
- 代码:https://github.com/MIT-SPARK/Kimera-VIO
17. maplab(视惯建图框架)
- 论文:Schneider T, Dymczyk M, Fehr M, et al. maplab: An open framework for research in visual-inertial mapping and localization[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 1418-1425.
- 代码:https://github.com/ethz-asl/maplab
- 多会话建图,地图合并,视觉惯性批处理优化和闭环
18. lili-om:固态雷达惯性里程计与建图
- 论文:Li K, Li M, Hanebeck U D. Towards high-performance solid-state-lidar-inertial odometry and mapping[J]. arXiv preprint arXiv:2010.13150, 2020.
- 代码:https://github.com/KIT-ISAS/lili-om
19. CamVox:Lidar 辅助视觉 SLAM
- 论文:ZHU, Yuewen, et al. CamVox: A Low-cost and Accurate Lidar-assisted Visual SLAM System. arXiv preprint arXiv:2011.11357, 2020.
- 代码:https://github.com/ISEE-Technology/CamVox
20. SSL_SLAM:固态 LiDAR 轻量级 3D 定位与建图
- 论文:Wang H, Wang C, Xie L. Lightweight 3-D Localization and Mapping for Solid-State LiDAR[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 1801-1807.
- 代码:https://github.com/wh200720041/SSL_SLAM
21. r2live:LiDAR-Inertial-Visual 紧耦合
- 论文:Lin J, Zheng C, Xu W, et al. R2LIVE: A Robust, Real-time, LiDAR-Inertial-Visual tightly-coupled state Estimator and mapping[J]. arXiv preprint arXiv:2102.12400, 2021.
- 代码:https://github.com/hku-mars/r2live
22. GVINS:GNSS-视觉-惯导紧耦合
- 论文:Cao S, Lu X, Shen S. GVINS: Tightly Coupled GNSS-Visual-Inertial for Smooth and Consistent State Estimation[J]. arXiv e-prints, 2021: arXiv: 2103.07899.
- 代码:https://github.com/HKUST-Aerial-Robotics/GVINS
23. LVI-SAM:Lidar-Visual-Inertial 建图与定位
- 论文:Shan T, Englot B, Ratti C, et al. LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping[J]. arXiv preprint arXiv:2104.10831, 2021. (ICRA2021)
- 代码:https://github.com/TixiaoShan/LVI-SAM
1.5 Dynamic SLAM (8项)
动态 SLAM 也是一个很值得研究的话题,这里不太好分类,很多工作用到了语义信息或者用来三维重建,收集的方案相对较少
1. DynamicSemanticMapping(动态语义建图)
- 论文:Kochanov D, Ošep A, Stückler J, et al. Scene flow propagation for semantic mapping and object discovery in dynamic street scenes[C]//Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on. IEEE, 2016: 1785-1792.
- 代码:https://github.com/ganlumomo/DynamicSemanticMapping ;wiki
2. DS-SLAM(动态语义 SLAM)
- 论文:Yu C, Liu Z, Liu X J, et al. DS-SLAM: A semantic visual SLAM towards dynamic environments[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 1168-1174.
- 代码:https://github.com/ivipsourcecode/DS-SLAM
3. Co-Fusion(实时分割与跟踪多物体)
- 论文:Rünz M, Agapito L. Co-fusion: Real-time segmentation, tracking and fusion of multiple objects[C]//2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017: 4471-4478.
- 代码:https://github.com/martinruenz/co-fusion ; Video
4. DynamicFusion
- 论文:Newcombe R A, Fox D, Seitz S M. Dynamicfusion: Reconstruction and tracking of non-rigid scenes in real-time[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 343-352.
- 代码:https://github.com/mihaibujanca/dynamicfusion
5. ReFusion(动态场景利用残差三维重建)
- 论文:Palazzolo E, Behley J, Lottes P, et al. ReFusion: 3D Reconstruction in Dynamic Environments for RGB-D Cameras Exploiting Residuals[J]. arXiv preprint arXiv:1905.02082, 2019.
- 代码:https://github.com/PRBonn/refusion ;Video
6. DynSLAM(室外大规模稠密重建)
- 论文:Bârsan I A, Liu P, Pollefeys M, et al. Robust dense mapping for large-scale dynamic environments[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018: 7510-7517.
- 代码:https://github.com/AndreiBarsan/DynSLAM
- 作者博士学位论文:Barsan I A. Simultaneous localization and mapping in dynamic scenes[D]. ETH Zurich, Department of Computer Science, 2017.
7. VDO-SLAM(动态物体感知的 SLAM)
-
论文:Zhang J, Henein M, Mahony R, et al. VDO-SLAM: A Visual Dynamic Object-aware SLAM System[J]. arXiv preprint arXiv:2005.11052, 2020.(IJRR Under Review)
- 相关论文
- IROS 2020 Robust Ego and Object 6-DoF Motion Estimation and Tracking
- ICRA 2020 Dynamic SLAM: The Need For Speed
- 相关论文
- 代码:https://github.com/halajun/VDO_SLAM | video
1.6 Mapping (22项)
针对建图的工作一方面是利用几何信息进行稠密重建,另一方面很多工作利用语义信息达到了很好的语义重建效果,三维重建、SFM
本身就是个很大的话题,开源代码也很多,以下方案收集地可能也不太全。
1. InfiniTAM(跨平台 CPU 实时重建)
- 论文:Prisacariu V A, Kähler O, Golodetz S, et al. Infinitam v3: A framework for large-scale 3d reconstruction with loop closure[J]. arXiv preprint arXiv:1708.00783, 2017.
- 代码:https://github.com/victorprad/InfiniTAM ;project page
2. BundleFusion
- 论文:Dai A, Nießner M, Zollhöfer M, et al. Bundlefusion: Real-time globally consistent 3d reconstruction using on-the-fly surface reintegration[J]. ACM Transactions on Graphics (TOG), 2017, 36(4): 76a.
- 代码:https://github.com/niessner/BundleFusion ;工程地址
3. KinectFusion
- 论文:Newcombe R A, Izadi S, Hilliges O, et al. KinectFusion: Real-time dense surface mapping and tracking[C]//2011 10th IEEE International Symposium on Mixed and Augmented Reality. IEEE, 2011: 127-136.
- 代码:https://github.com/chrdiller/KinectFusionApp
4. ElasticFusion
- 论文:Whelan T, Salas-Moreno R F, Glocker B, et al. ElasticFusion: Real-time dense SLAM and light source estimation[J]. The International Journal of Robotics Research, 2016, 35(14): 1697-1716.
- 代码:https://github.com/mp3guy/ElasticFusion
5. Kintinuous
- ElasticFusion 同一个团队的工作,帝国理工 Stefan Leutenegger 谷歌学术
- 论文:Whelan T, Kaess M, Johannsson H, et al. Real-time large-scale dense RGB-D SLAM with volumetric fusion[J]. The International Journal of Robotics Research, 2015, 34(4-5): 598-626.
- 代码:https://github.com/mp3guy/Kintinuous
6. ElasticReconstruction
- 论文:Choi S, Zhou Q Y, Koltun V. Robust reconstruction of indoor scenes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015: 5556-5565.
- 代码:https://github.com/qianyizh/ElasticReconstruction ;作者主页
7. FlashFusion
- 论文:Han L, Fang L. FlashFusion: Real-time Globally Consistent Dense 3D Reconstruction using CPU Computing[C]. RSS, 2018.
- 代码(一直没放出来):https://github.com/lhanaf/FlashFusion ; Project Page
8. RTAB-Map(激光视觉稠密重建)
- 论文:Labbé M, Michaud F. RTAB‐Map as an open‐source lidar and visual simultaneous localization and mapping library for large‐scale and long‐term online operation[J]. Journal of Field Robotics, 2019, 36(2): 416-446.
- 代码:https://github.com/introlab/rtabmap ;Video ;project page
9. RobustPCLReconstruction(户外稠密重建)
- 论文:Lan Z, Yew Z J, Lee G H. Robust Point Cloud Based Reconstruction of Large-Scale Outdoor Scenes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 9690-9698.
- 代码:https://github.com/ziquan111/RobustPCLReconstruction ;Video
10. plane-opt-rgbd(室内平面重建)
- 论文:Wang C, Guo X. Efficient Plane-Based Optimization of Geometry and Texture for Indoor RGB-D Reconstruction[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2019: 49-53.
- 代码:https://github.com/chaowang15/plane-opt-rgbd
11. DenseSurfelMapping(稠密表面重建)
- 论文:Wang K, Gao F, Shen S. Real-time scalable dense surfel mapping[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 6919-6925.
- 代码:https://github.com/HKUST-Aerial-Robotics/DenseSurfelMapping
12. surfelmeshing(网格重建)
- 论文:Schöps T, Sattler T, Pollefeys M. Surfelmeshing: Online surfel-based mesh reconstruction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019.
- 代码:https://github.com/puzzlepaint/surfelmeshing
13. DPPTAM(单目稠密重建)
- 论文:Concha Belenguer A, Civera Sancho J. DPPTAM: Dense piecewise planar tracking and mapping from a monocular sequence[C]//Proc. IEEE/RSJ Int. Conf. Intell. Rob. Syst. 2015 (ART-2015-92153).
- 代码:https://github.com/alejocb/dpptam
- 相关研究:基于超像素的单目 SLAM:Using Superpixels in Monocular SLAM ICRA 2014 ;谷歌学术
14. VI-MEAN(单目视惯稠密重建)
- 论文:Yang Z, Gao F, Shen S. Real-time monocular dense mapping on aerial robots using visual-inertial fusion[C]//2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017: 4552-4559.
- 代码:https://github.com/dvorak0/VI-MEAN ;Video
15. REMODE(单目概率稠密重建)
- 论文:Pizzoli M, Forster C, Scaramuzza D. REMODE: Probabilistic, monocular dense reconstruction in real time[C]//2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2014: 2609-2616.
- 原始开源代码:https://github.com/uzh-rpg/rpg_open_remode
- 与 ORB-SLAM2 结合版本:https://github.com/ayushgaud/ORB_SLAM2 https://github.com/ayushgaud/ORB_SLAM2
16. DeepFactors(实时的概率单目稠密 SLAM)
- 帝国理工学院戴森机器人实验室
- 论文:Czarnowski J, Laidlow T, Clark R, et al. DeepFactors: Real-Time Probabilistic Dense Monocular SLAM[J]. arXiv preprint arXiv:2001.05049, 2020.
- 代码:https://github.com/jczarnowski/DeepFactors (还未放出)
- 其他论文:Bloesch M, Czarnowski J, Clark R, et al. CodeSLAM—learning a compact, optimisable representation for dense visual SLAM[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 2560-2568.
17. probabilistic_mapping(单目概率稠密重建)
- 港科沈邵劼老师团队
- 论文:Ling Y, Wang K, Shen S. Probabilistic dense reconstruction from a moving camera[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 6364-6371.
- 代码:https://github.com/ygling2008/probabilistic_mapping
- 另外一篇稠密重建文章的代码一直没放出来 Github :Ling Y, Shen S. Real‐time dense mapping for online processing and navigation[J]. Journal of Field Robotics, 2019, 36(5): 1004-1036.
18. ORB-SLAM2 单目半稠密建图
- 论文:Mur-Artal R, Tardós J D. Probabilistic Semi-Dense Mapping from Highly Accurate Feature-Based Monocular SLAM[C]//Robotics: Science and Systems. 2015, 2015.
- 代码(本身没有开源,贺博复现的一个版本):https://github.com/HeYijia/ORB_SLAM2
- 加上线段之后的半稠密建图
- 论文:He S, Qin X, Zhang Z, et al. Incremental 3d line segment extraction from semi-dense slam[C]//2018 24th International Conference on Pattern Recognition (ICPR). IEEE, 2018: 1658-1663.
- 代码:https://github.com/shidahe/semidense-lines
- 作者在此基础上用于指导远程抓取操作的一项工作:https://github.com/atlas-jj/ORB-SLAM-free-space-carving
19. Voxgraph(SDF 体素建图)
- 论文:Reijgwart V, Millane A, Oleynikova H, et al. Voxgraph: Globally Consistent, Volumetric Mapping Using Signed Distance Function Submaps[J]. IEEE Robotics and Automation Letters, 2019, 5(1): 227-234.
- 代码:https://github.com/ethz-asl/voxgraph
20. SegMap(三维分割建图)
- 论文:Dubé R, Cramariuc A, Dugas D, et al. SegMap: 3d segment mapping using data-driven descriptors[J]. arXiv preprint arXiv:1804.09557, 2018.
- 代码:https://github.com/ethz-asl/segmap
21. OpenREALM:无人机实时建图框架
- 论文:Kern A, Bobbe M, Khedar Y, et al. OpenREALM: Real-time Mapping for Unmanned Aerial Vehicles[J]. arXiv preprint arXiv:2009.10492, 2020.
- 代码:https://github.com/laxnpander/OpenREALM
22. c-blox:可拓展的 TSDF 稠密建图
- 论文:Millane A, Taylor Z, Oleynikova H, et al. C-blox: A scalable and consistent tsdf-based dense mapping approach[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 995-1002.
- 代码:https://github.com/ethz-asl/cblox
1.7 Optimization (6项)
优化可能是 SLAM 中最难的一部分了吧 +_+ ,一般都是直接用现成的因子图、图优化方案,要创新可不容易
1. 后端优化库
- GTSAM:https://github.com/borglab/gtsam ;官网
- g2o:https://github.com/RainerKuemmerle/g2o
- ceres:http://ceres-solver.org/
2. ICE-BA
- 论文:Liu H, Chen M, Zhang G, et al. Ice-ba: Incremental, consistent and efficient bundle adjustment for visual-inertial slam[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 1974-1982.
- 代码:https://github.com/baidu/ICE-BA
3. minisam(因子图最小二乘优化框架)
- 论文:Dong J, Lv Z. miniSAM: A Flexible Factor Graph Non-linear Least Squares Optimization Framework[J]. arXiv preprint arXiv:1909.00903, 2019.
- 代码:https://github.com/dongjing3309/minisam ; 文档
4. SA-SHAGO(几何基元图优化)
- 论文:Aloise I, Della Corte B, Nardi F, et al. Systematic Handling of Heterogeneous Geometric Primitives in Graph-SLAM Optimization[J]. IEEE Robotics and Automation Letters, 2019, 4(3): 2738-2745.
- 代码:https://srrg.gitlab.io/sashago-website/index.html#
5. MH-iSAM2(SLAM 优化器)
- 论文:Hsiao M, Kaess M. MH-iSAM2: Multi-hypothesis iSAM using Bayes Tree and Hypo-tree[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 1274-1280.
- 代码:https://bitbucket.org/rpl_cmu/mh-isam2_lib/src/master/
6. MOLA(用于定位和建图的模块化优化框架)
- 论文:Blanco-Claraco J L. A Modular Optimization Framework for Localization and Mapping[J]. Proc. of Robotics: Science and Systems (RSS), FreiburgimBreisgau, Germany, 2019, 2.
- 代码:https://github.com/MOLAorg/mola ;Video ;使用文档
2. 优秀作者与实验室
这一部分整理之后发布在知乎(2020 年 4 月 19 日):https://zhuanlan.zhihu.com/p/130530891文章来源:https://www.toymoban.com/news/detail-774085.html
1. 美国卡耐基梅陇大学机器人研究所
- 研究方向:机器人感知、结构,服务型、运输、制造业、现场机器
- 研究所主页:https://www.ri.cmu.edu/
- 下属 Field Robotic Center 主页:https://frc.ri.cmu.edu/
- 发表论文:https://www.ri.cmu.edu/pubs/
- 👦 Michael Kaess:个人主页 ,谷歌学术
- 👦 Sebastian Scherer:个人主页 ,谷歌学术
- 📜 Kaess M, Ranganathan A, Dellaert F. iSAM: Incremental smoothing and mapping[J]. IEEE Transactions on Robotics, 2008, 24(6): 1365-1378.
- 📜 Hsiao M, Westman E, Zhang G, et al. Keyframe-based dense planar SLAM[C]//2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017: 5110-5117.
- 📜 Kaess M. Simultaneous localization and mapping with infinite planes[C]//2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2015: 4605-4611.
2. 美国加州大学圣地亚哥分校语境机器人研究所
- 研究方向:多模态环境理解,语义导航,自主信息获取
- 实验室主页:https://existentialrobotics.org/index.html
- 发表论文汇总:https://existentialrobotics.org/pages/publications.html
- 👦 Nikolay Atanasov:个人主页 谷歌学术
- 机器人状态估计与感知课程 ppt:https://natanaso.github.io/ece276a2019/schedule.html
- 📜 语义 SLAM 经典论文:Bowman S L, Atanasov N, Daniilidis K, et al. Probabilistic data association for semantic slam[C]//2017 IEEE international conference on robotics and automation (ICRA). IEEE, 2017: 1722-1729.
- 📜 实例网格模型定位与建图:Feng Q, Meng Y, Shan M, et al. Localization and Mapping using Instance-specific Mesh Models[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019: 4985-4991.
- 📜 基于事件相机的 VIO:Zihao Zhu A, Atanasov N, Daniilidis K. Event-based visual inertial odometry[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 5391-5399.
3. 美国特拉华大学机器人感知与导航组
- 研究方向:SLAM、VINS、语义定位与建图等
- 实验室主页:https://sites.udel.edu/robot/
- 发表论文汇总:https://sites.udel.edu/robot/publications/
- Github 地址:https://github.com/rpng?page=2
- 📜 Geneva P, Eckenhoff K, Lee W, et al. Openvins: A research platform for visual-inertial estimation[C]//IROS 2019 Workshop on Visual-Inertial Navigation: Challenges and Applications, Macau, China. IROS 2019.(代码:https://github.com/rpng/open_vins )
- 📜 Huai Z, Huang G. Robocentric visual-inertial odometry[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 6319-6326.(代码:https://github.com/rpng/R-VIO )
- 📜 Zuo X, Geneva P, Yang Y, et al. Visual-Inertial Localization With Prior LiDAR Map Constraints[J]. IEEE Robotics and Automation Letters, 2019, 4(4): 3394-3401.
- 📜 Zuo X, Ye W, Yang Y, et al. Multimodal localization: Stereo over LiDAR map[J]. Journal of Field Robotics, 2020 ( 左星星博士谷歌学术)
- 👦 黄国权教授主页
4. 美国麻省理工学院航空航天实验室
- 研究方向:位姿估计与导航,路径规划,控制与决策,机器学习与强化学习
- 实验室主页:http://acl.mit.edu/
- 发表论文:http://acl.mit.edu/publications (实验室的学位论文也可以在这里找到)
- 👦 Jonathan P. How 教授:个人主页 谷歌学术
- 👦 Kasra Khosoussi(SLAM 图优化):谷歌学术
- 📜 物体级 SLAM:Mu B, Liu S Y, Paull L, et al. Slam with objects using a nonparametric pose graph[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2016: 4602-4609.(代码:https://github.com/BeipengMu/objectSLAM)
- 📜 物体级 SLAM 导航:Ok K, Liu K, Frey K, et al. Robust Object-based SLAM for High-speed Autonomous Navigation[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 669-675.
- 📜 SLAM 的图优化:Khosoussi, K., Giamou, M., Sukhatme, G., Huang, S., Dissanayake, G., and How, J. P., Reliable Graphs for SLAM [C]//International Journal of Robotics Research (IJRR), 2019.
5. 美国麻省理工学院 SPARK 实验室
- 研究方向:移动机器人环境感知
- 实验室主页:http://web.mit.edu/sparklab/
- 👦 Luca Carlone 教授:个人主页 谷歌学术
- 📜 SLAM 经典综述:Cadena C, Carlone L, Carrillo H, et al. Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age[J]. IEEE Transactions on robotics, 2016, 32(6): 1309-1332.
- 📜 VIO 流形预积分:Forster C, Carlone L, Dellaert F, et al. On-Manifold Preintegration for Real-Time Visual–Inertial Odometry[J]. IEEE Transactions on Robotics, 2016, 33(1): 1-21.
- 📜 开源语义 SLAM:Rosinol A, Abate M, Chang Y, et al. Kimera: an Open-Source Library for Real-Time Metric-Semantic Localization and Mapping[J]. arXiv preprint arXiv:1910.02490, 2019.(代码:https://github.com/MIT-SPARK/Kimera )
6. 美国麻省理工学院海洋机器人组
- 研究方向:水下或陆地移动机器人导航与建图
- 实验室主页:https://marinerobotics.mit.edu/ (隶属于 MIT 计算机科学与人工智能实验室)
- 👦 John Leonard 教授:谷歌学术
- 发表论文汇总:https://marinerobotics.mit.edu/biblio
- 📜 面向物体的 SLAM:Finman R, Paull L, Leonard J J. Toward object-based place recognition in dense rgb-d maps[C]//ICRA Workshop Visual Place Recognition in Changing Environments, Seattle, WA. 2015.
- 📜 拓展 KinectFusion:Whelan T, Kaess M, Fallon M, et al. Kintinuous: Spatially extended kinectfusion[J]. 2012.
- 📜 语义 SLAM 概率数据关联:Doherty K, Fourie D, Leonard J. Multimodal semantic slam with probabilistic data association[C]//2019 international conference on robotics and automation (ICRA). IEEE, 2019: 2419-2425.
7. 美国明尼苏达大学多元自主机器人系统实验室
- 研究方向:视觉、激光、惯性导航系统,移动设备大规模三维建模与定位
- 实验室主页:http://mars.cs.umn.edu/index.php
- 发表论文汇总:http://mars.cs.umn.edu/publications.php
- 👦 Stergios I. Roumeliotis:个人主页 ,谷歌学术
- 📜 移动设备 VIO:Wu K, Ahmed A, Georgiou G A, et al. A Square Root Inverse Filter for Efficient Vision-aided Inertial Navigation on Mobile Devices[C]//Robotics: Science and Systems. 2015, 2.(项目主页:http://mars.cs.umn.edu/research/sriswf.php )
- 📜 移动设备大规模三维半稠密建图:Guo C X, Sartipi K, DuToit R C, et al. Resource-aware large-scale cooperative three-dimensional mapping using multiple mobile devices[J]. IEEE Transactions on Robotics, 2018, 34(5): 1349-1369. (项目主页:http://mars.cs.umn.edu/research/semi_dense_mapping.php )
- 📜 VIO 相关研究:http://mars.cs.umn.edu/research/vins_overview.php
8. 美国宾夕法尼亚大学 Vijay Kumar 实验室
- 研究方向:自主微型无人机
- 实验室主页:https://www.kumarrobotics.org/
- 发表论文:https://www.kumarrobotics.org/publications/
- 研究成果视频:https://www.youtube.com/user/KumarLabPenn/videos
- 📜 无人机半稠密 VIO:Liu W, Loianno G, Mohta K, et al. Semi-Dense Visual-Inertial Odometry and Mapping for Quadrotors with SWAP Constraints[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018: 1-6.
- 📜 语义数据关联:Liu X, Chen S W, Liu C, et al. Monocular Camera Based Fruit Counting and Mapping with Semantic Data Association[J]. IEEE Robotics and Automation Letters, 2019, 4(3): 2296-2303.
9. Srikumar Ramalingam(美国犹他大学计算机学院)
- 研究方向:三维重构、语义分割、视觉 SLAM、图像定位、深度神经网络
- 👦 Srikumar Ramalingam:个人主页 谷歌学术
- 📜 点面 SLAM:Taguchi Y, Jian Y D, Ramalingam S, et al. Point-plane SLAM for hand-held 3D sensors[C]//2013 IEEE international conference on robotics and automation. IEEE, 2013: 5182-5189.
- 📜 点线定位:Ramalingam S, Bouaziz S, Sturm P. Pose estimation using both points and lines for geo-localization[C]//2011 IEEE International Conference on Robotics and Automation. IEEE, 2011: 4716-4723.(视频)
- 📜 2D 3D 定位:Ataer-Cansizoglu E, Taguchi Y, Ramalingam S. Pinpoint SLAM: A hybrid of 2D and 3D simultaneous localization and mapping for RGB-D sensors[C]//2016 IEEE international conference on robotics and automation (ICRA). IEEE, 2016: 1300-1307.(视频)
10. Frank Dellaert(美国佐治亚理工学院机器人与智能机器研究中心)
- 研究方向:SLAM,图像时空重构
- 👦 个人主页,谷歌学术
- 📜 因子图:Dellaert F. Factor graphs and GTSAM: A hands-on introduction[R]. Georgia Institute of Technology, 2012. (GTSAM 代码:http://borg.cc.gatech.edu/ )
- 📜 多机器人分布式 SLAM:Cunningham A, Wurm K M, Burgard W, et al. Fully distributed scalable smoothing and mapping with robust multi-robot data association[C]//2012 IEEE International Conference on Robotics and Automation. IEEE, 2012: 1093-1100.
- 📜 Choudhary S, Trevor A J B, Christensen H I, et al. SLAM with object discovery, modeling and mapping[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2014: 1018-1025.
11. Patricio Vela (美国佐治亚理工学院智能视觉与自动化实验室)
- 研究方向:机器人控制、定位与导航
- 实验室主页:http://ivalab.gatech.edu/
- 👦 Patricio Vela 个人主页
- 👦 赵轶璞 个人主页 谷歌学术
- 📜 Zhao Y, Smith J S, Karumanchi S H, et al. Closed-Loop Benchmarking of Stereo Visual-Inertial SLAM Systems: Understanding the Impact of Drift and Latency on Tracking Accuracy[J]. arXiv preprint arXiv:2003.01317, 2020.
- 📜 Zhao Y, Vela P A. Good feature selection for least squares pose optimization in VO/VSLAM[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 1183-1189.(代码:https://github.com/ivalab/FullResults_GoodFeature )
- 📜 Zhao Y, Vela P A. Good line cutting: Towards accurate pose tracking of line-assisted VO/VSLAM[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 516-531. (代码:https://github.com/ivalab/GF_PL_SLAM )
12. 加拿大蒙特利尔大学 机器人与嵌入式 AI 实验室
- 研究方向:SLAM,不确定性建模
- 实验室主页:http://montrealrobotics.ca/
- 👦 Liam Paull 教授:个人主页 谷歌学术
- 📜 Mu B, Liu S Y, Paull L, et al. Slam with objects using a nonparametric pose graph[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2016: 4602-4609.(代码:https://github.com/BeipengMu/objectSLAM)
- 📜 Murthy Jatavallabhula K, Iyer G, Paull L. gradSLAM: Dense SLAM meets Automatic Differentiation[J]. arXiv preprint arXiv:1910.10672, 2019.(代码:https://github.com/montrealrobotics/gradSLAM )
13. 加拿大舍布鲁克大学智能、交互、综合、跨学科机器人实验室
- 研究方向:移动机器人软硬件设计
- 实验室主页:https://introlab.3it.usherbrooke.ca/
- 📜 激光视觉稠密重建:Labbé M, Michaud F. RTAB‐Map as an open‐source lidar and visual simultaneous localization and mapping library for large‐scale and long‐term online operation[J]. Journal of Field Robotics, 2019, 36(2): 416-446.
- 代码:https://github.com/introlab/rtabmap
- 项目主页:http://introlab.github.io/rtabmap/
14. 瑞士苏黎世大学机器人与感知课题组
- 研究方向:移动机器人、无人机环境感知与导航,VISLAM,事件相机
- 实验室主页:http://rpg.ifi.uzh.ch/index.html
- 发表论文汇总:http://rpg.ifi.uzh.ch/publications.html
- Github 代码公开地址:https://github.com/uzh-rpg
- 📜 Forster C, Pizzoli M, Scaramuzza D. SVO: Fast semi-direct monocular visual odometry[C]//2014 IEEE international conference on robotics and automation (ICRA). IEEE, 2014: 15-22.
- 📜 VO/VIO 轨迹评估工具 rpg_trajectory_evaluation:https://github.com/uzh-rpg/rpg_trajectory_evaluation
- 📜 事件相机项目主页:http://rpg.ifi.uzh.ch/research_dvs.html
- 👦 人物:Davide Scaramuzza 张子潮
15. 瑞士苏黎世联邦理工计算机视觉与几何实验室
- 研究方向:定位、三维重建、语义分割、机器人视觉
- 实验室主页:http://www.cvg.ethz.ch/index.php
- 发表论文:http://www.cvg.ethz.ch/publications/
- 📜 视觉语义里程计:Lianos K N, Schonberger J L, Pollefeys M, et al. Vso: Visual semantic odometry[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 234-250.
- 📜 视觉语义定位:CVPR 2018 Semantic visual localization
- 作者博士学位论文:2018 Robust Methods for Accurate and Efficient 3D Modeling from Unstructured Imagery
- 📜 大规模户外建图:Bârsan I A, Liu P, Pollefeys M, et al. Robust dense mapping for large-scale dynamic environments[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018: 7510-7517.
- 代码:https://github.com/AndreiBarsan/DynSLAM
- 作者博士学位论文:Barsan I A. Simultaneous localization and mapping in dynamic scenes[D]. ETH Zurich, Department of Computer Science, 2017.
- 👦 Marc Pollefeys:个人主页,谷歌学术
- 👦 Johannes L. Schönberger:个人主页,谷歌学术
16. 英国帝国理工学院戴森机器人实验室
- 研究方向:机器人视觉场景与物体理解、机器人操纵
- 实验室主页:https://www.imperial.ac.uk/dyson-robotics-lab/
- 发表论文:https://www.imperial.ac.uk/dyson-robotics-lab/publications/
-
代表性工作:MonoSLAM、CodeSLAM、ElasticFusion、KinectFusion
- 📜 ElasticFusion:Whelan T, Leutenegger S, Salas-Moreno R, et al. ElasticFusion: Dense SLAM without a pose graph[C]. Robotics: Science and Systems, 2015.(代码:https://github.com/mp3guy/ElasticFusion )
- 📜 Semanticfusion:McCormac J, Handa A, Davison A, et al. Semanticfusion: Dense 3d semantic mapping with convolutional neural networks[C]//2017 IEEE International Conference on Robotics and automation (ICRA). IEEE, 2017: 4628-4635.(代码:https://github.com/seaun163/semanticfusion )
- 📜 Code-SLAM:Bloesch M, Czarnowski J, Clark R, et al. CodeSLAM—learning a compact, optimisable representation for dense visual SLAM[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 2560-2568.
- 👦 Andrew Davison:谷歌学术
17. 英国牛津大学信息工程学
- 研究方向:SLAM、目标跟踪、运动结构、场景增强、移动机器人运动规划、导航与建图等等等
-
实验室主页:http://www.robots.ox.ac.uk/
- 主动视觉实验室:http://www.robots.ox.ac.uk/ActiveVision/
- 牛津机器人学院:https://ori.ox.ac.uk/
-
发表论文汇总:
- 主动视觉实验室:http://www.robots.ox.ac.uk/ActiveVision/Publications/index.html
- 机器人学院:https://ori.ox.ac.uk/publications/papers/
-
代表性工作:
- 📜 Klein G, Murray D. PTAM: Parallel tracking and mapping for small AR workspaces[C]//2007 6th IEEE and ACM international symposium on mixed and augmented reality. IEEE, 2007: 225-234.
- 📜 RobotCar 数据集:https://robotcar-dataset.robots.ox.ac.uk/
- 👦 人物(谷歌学术):David Murray Maurice Fallon
- 部分博士学位论文可以在这里搜到:https://ora.ox.ac.uk/
18. 德国慕尼黑工业大学计算机视觉组
- 研究方向:三维重建、机器人视觉、深度学习、视觉 SLAM 等
- 实验室主页:https://vision.in.tum.de/research/vslam
- 发表论文汇总:https://vision.in.tum.de/publications
-
代表作:DSO、LDSO、LSD_SLAM、DVO_SLAM
- 📜 DSO:Engel J, Koltun V, Cremers D. Direct sparse odometry[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 40(3): 611-625.(代码:https://github.com/JakobEngel/dso )
- 📜 LSD-SLAM: Engel J, Schöps T, Cremers D. LSD-SLAM: Large-scale direct monocular SLAM[C]//European conference on computer vision. Springer, Cham, 2014: 834-849.(代码:https://github.com/tum-vision/lsd_slam )2.
- Github 地址:https://github.com/tum-vision
- 👦 Daniel Cremers 教授:个人主页 谷歌学术
- 👦 Jakob Engel(LSD-SLAM,DSO 作者):个人主页 谷歌学术
19. 德国马克斯普朗克智能系统研究所嵌入式视觉组
- 研究方向:智能体自主环境理解、导航与物体操纵
- 实验室主页:https://ev.is.tuebingen.mpg.de/
- 👦 负责人 Jörg Stückler(前 TUM 教授):个人主页 谷歌学术
- 📜 发表论文汇总:https://ev.is.tuebingen.mpg.de/publications
- Kasyanov A, Engelmann F, Stückler J, et al. Keyframe-based visual-inertial online SLAM with relocalization[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017: 6662-6669.
- 📜 Strecke M, Stuckler J. EM-Fusion: Dynamic Object-Level SLAM with Probabilistic Data Association[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 5865-5874.
- 📜 Usenko, V., Demmel, N., Schubert, D., Stückler, J., Cremers, D. Visual-Inertial Mapping with Non-Linear Factor Recovery IEEE Robotics and Automation Letters (RA-L), 5, 2020
20. 德国弗莱堡大学智能自主系统实验室
- 研究方向:多机器人导航与协作,环境建模与状态估计
- 实验室主页:http://ais.informatik.uni-freiburg.de/index_en.php
- 发表论文汇总:http://ais.informatik.uni-freiburg.de/publications/index_en.php (学位论文也可以在这里找到)
- 👦 Wolfram Burgard:谷歌学术
- 开放数据集:http://aisdatasets.informatik.uni-freiburg.de/
- 📜 RGB-D SLAM:Endres F, Hess J, Sturm J, et al. 3-D mapping with an RGB-D camera[J]. IEEE transactions on robotics, 2013, 30(1): 177-187.(代码:https://github.com/felixendres/rgbdslam_v2 )
- 📜 跨季节的 SLAM:Naseer T, Ruhnke M, Stachniss C, et al. Robust visual SLAM across seasons[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2015: 2529-2535.
- 📜 博士学位论文:Robust Graph-Based Localization and Mapping 2015
- 📜 博士学位论文:Discovering and Leveraging Deep Multimodal Structure for Reliable Robot Perception and Localization 2019
- 📜 博士学位论文:Robot Localization and Mapping in Dynamic Environments 2019
21. 西班牙萨拉戈萨大学机器人、感知与实时组 SLAM 实验室
- 研究方向:视觉 SLAM、物体 SLAM、非刚性 SLAM、机器人、增强现实
- 实验室主页:http://robots.unizar.es/slamlab/
- 发表论文:http://robots.unizar.es/slamlab/?extra=3 (论文好像没更新,可以访问下面实验室大佬的谷歌学术查看最新论文)
- 👦 J. M. M. Montiel:谷歌学术
- 📜 Mur-Artal R, Tardós J D. Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras[J]. IEEE Transactions on Robotics, 2017, 33(5): 1255-1262.
- Gálvez-López D, Salas M, Tardós J D, et al. Real-time monocular object slam[J]. Robotics and Autonomous Systems, 2016, 75: 435-449.
- 📜 Strasdat H, Montiel J M M, Davison A J. Real-time monocular SLAM: Why filter?[C]//2010 IEEE International Conference on Robotics and Automation. IEEE, 2010: 2657-2664.
- 📜 Zubizarreta J, Aguinaga I, Montiel J M M. Direct sparse mapping[J]. arXiv preprint arXiv:1904.06577, 2019.
- Elvira R, Tardós J D, Montiel J M M. ORBSLAM-Atlas: a robust and accurate multi-map system[J]. arXiv preprint arXiv:1908.11585, 2019.
22. 西班牙马拉加大学机器感知与智能机器人课题组
- 研究方向:自主机器人、人工嗅觉、计算机视觉
- 实验室主页:http://mapir.uma.es/mapirwebsite/index.php/topics-2.html
- 发表论文汇总:http://mapir.isa.uma.es/mapirwebsite/index.php/publications-menu-home.html
- 📜 Gomez-Ojeda R, Moreno F A, Zuñiga-Noël D, et al. PL-SLAM: a stereo SLAM system through the combination of points and line segments[J]. IEEE Transactions on Robotics, 2019, 35(3): 734-746.(代码:https://github.com/rubengooj/pl-slam )
- 👦 Francisco-Angel Moreno
- 👦 Ruben Gomez-Ojeda 点线 SLAM
- 📜 Gomez-Ojeda R, Briales J, Gonzalez-Jimenez J. PL-SVO: Semi-direct Monocular Visual Odometry by combining points and line segments[C]//Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on. IEEE, 2016: 4211-4216.(代码:https://github.com/rubengooj/pl-svo )
- 📜 Gomez-Ojeda R, Gonzalez-Jimenez J. Robust stereo visual odometry through a probabilistic combination of points and line segments[C]//2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2016: 2521-2526.(代码:https://github.com/rubengooj/stvo-pl )
- 📜 Gomez-Ojeda R, Zuñiga-Noël D, Moreno F A, et al. PL-SLAM: a Stereo SLAM System through the Combination of Points and Line Segments[J]. arXiv preprint arXiv:1705.09479, 2017.(代码:https://github.com/rubengooj/pl-slam )
23. Alejo Concha(Oculus VR,西班牙萨拉戈萨大学)
- 研究方向:SLAM,单目稠密重建,传感器融合
- 👦 个人主页:https://sites.google.com/view/alejoconcha/ 谷歌学术
- Github:https://github.com/alejocb
- 📜 IROS 2015 单目平面重建:DPPTAM: Dense piecewise planar tracking and mapping from a monocular sequence (代码:https://github.com/alejocb/dpptam )
- 📜 IROS 2017 开源 RGB-D SLAM:RGBDTAM: A Cost-Effective and Accurate RGB-D Tracking and Mapping System(代码:https://github.com/alejocb/rgbdtam )
- 📜 ICRA 2016:Visual-inertial direct SLAM
- 📜 ICRA 2014:Using Superpixels in Monocular SLAM
- RSS 2014:Manhattan and Piecewise-Planar Constraints for Dense Monocular Mapping
24. 奥地利格拉茨技术大学计算机图形学与视觉研究所
- 研究方向:AR/VR,机器人视觉,机器学习,目标识别与三维重建
- 实验室主页:https://www.tugraz.at/institutes/icg/home/
- 👦 Friedrich Fraundorfer 教授:团队主页 谷歌学术
- 📜 Visual Odometry: Part I The First 30 Years and Fundamentals
- 📜 Visual Odometry: Part II: Matching, Robustness, Optimization, and Applications
- 📜 Schenk F, Fraundorfer F. RESLAM: A real-time robust edge-based SLAM system[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 154-160.(代码:https://github.com/fabianschenk/RESLAM )
- 👦 Dieter Schmalstieg 教授:团队主页 谷歌学术
- 📜 教科书:Augmented Reality: Principles and Practice
- 📜 Arth C, Pirchheim C, Ventura J, et al. Instant outdoor localization and slam initialization from 2.5 d maps[J]. IEEE transactions on visualization and computer graphics, 2015, 21(11): 1309-1318.
- 📜 Hachiuma R, Pirchheim C, Schmalstieg D, et al. DetectFusion: Detecting and Segmenting Both Known and Unknown Dynamic Objects in Real-time SLAM[J]. arXiv preprint arXiv:1907.09127, 2019.
25. 波兰波兹南工业大学移动机器人实验室
- 研究方向:SLAM,机器人运动规划,控制
- 实验室主页:http://lrm.put.poznan.pl/
- Github 主页:https://github.com/LRMPUT
- 📜 Wietrzykowski J. On the representation of planes for efficient graph-based slam with high-level features[J]. Journal of Automation Mobile Robotics and Intelligent Systems, 2016, 10.(代码:https://github.com/LRMPUT/PlaneSLAM )
- 📜 Wietrzykowski J, Skrzypczyński P. PlaneLoc: Probabilistic global localization in 3-D using local planar features[J]. Robotics and Autonomous Systems, 2019.(代码:https://github.com/LRMPUT/PlaneLoc )
- 📜 PUTSLAM:http://lrm.put.poznan.pl/putslam/
26. Alexander Vakhitov(三星莫斯科 AI 中心)
- 研究方向:SLAM,几何视觉
- 👦 个人主页:https://alexandervakhitov.github.io/ ,谷歌学术
- 📜 点线 SLAM:ICRA 2017 PL-SLAM: Real-time monocular visual SLAM with points and lines
- 📜 点线定位:Pumarola A, Vakhitov A, Agudo A, et al. Relative localization for aerial manipulation with PL-SLAM[M]//Aerial Robotic Manipulation. Springer, Cham, 2019: 239-248.
- 📜 学习型线段:IEEE Access 2019 Learnable line segment descriptor for visual SLAM(代码:https://github.com/alexandervakhitov/lld-slam )
27. 澳大利亚昆士兰科技大学机器人技术中心
- 研究方向:脑启发式机器人,采矿机器人,机器人视觉
- 实验室主页:https://www.qut.edu.au/research/centre-for-robotics
- 开源代码:https://research.qut.edu.au/qcr/open-source-code/
- 👦 Niko Sünderhauf:个人主页 ,谷歌学术
- 📜 RA-L 2018 二次曲面 SLAM:QuadricSLAM: Dual quadrics from object detections as landmarks in object-oriented SLAM
- 📜 Nicholson L, Milford M, Sunderhauf N. QuadricSLAM: Dual quadrics as SLAM landmarks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2018: 313-314.
- 📜 Semantic SLAM 项目主页:http://www.semanticslam.ai/
- 📜 IROS 2017:Meaningful maps with object-oriented semantic mapping
- 👦 Michael Milford:谷歌学术 https://scholar.google.com/citations?user=TDSmCKgAAAAJ&hl=zh-CN&oi=ao
- 📜 ICRA 2012:SeqSLAM: Visual route-based navigation for sunny summer days and stormy winter nights (代码:https://michaelmilford.com/seqslam/)
- 📜 Ball D, Heath S, Wiles J, et al. OpenRatSLAM: an open source brain-based SLAM system[J]. Autonomous Robots, 2013, 34(3): 149-176.(代码:https://openslam-org.github.io/openratslam.html )
- 📜 Yu F, Shang J, Hu Y, et al. NeuroSLAM: a brain-inspired SLAM system for 3D environments[J]. Biological Cybernetics, 2019, 113(5-6): 515-545. (代码:https://github.com/cognav/NeuroSLAM )
28. 澳大利亚机器人视觉中心
- 研究方向:机器人感知、理解与学习 (集合了昆士兰科技大学,澳大利亚国立大学,阿德莱德大学,昆士兰大学等学校机器人领域的研究者)
- 实验室主页:https://www.roboticvision.org/
- 人物:https://www.roboticvision.org/rv_person_category/researchers/
- 发表论文汇总:https://www.roboticvision.org/publications/scientific-publications/
- 👦 Yasir Latif:个人主页,谷歌学术
- 📜 Latif Y, Cadena C, Neira J. Robust loop closing over time for pose graph SLAM[J]. The International Journal of Robotics Research, 2013, 32(14): 1611-1626.
- 📜 Latif Y, Cadena C, Neira J. Robust loop closing over time[C]//Proc. Robotics: Science Systems. 2013: 233-240.(代码:https://github.com/ylatif/rrr )
- 👦 Ian D Reid:谷歌学术:https://scholar.google.com/citations?user=ATkNLcQAAAAJ&hl=zh-CN&oi=sra
- 📜 ICRA 2019:Real-time monocular object-model aware sparse SLAM
- 📜 Reid I. Towards semantic visual SLAM[C]//2014 13th International Conference on Control Automation Robotics & Vision (ICARCV). IEEE, 2014: 1-1.
29. 日本国立先进工业科学技术研究所
- 人工智能研究中心:https://www.airc.aist.go.jp/en/intro/
- 👦 Ken Sakurada:个人主页,谷歌学术
- 📜 Sumikura S, Shibuya M, Sakurada K. OpenVSLAM: A Versatile Visual SLAM Framework[C]//Proceedings of the 27th ACM International Conference on Multimedia. 2019: 2292-2295.(代码:https://github.com/xdspacelab/openvslam )
- 👦 Shuji Oishi:谷歌学术
- 📜 极稠密特征点建图:Yokozuka M, Oishi S, Thompson S, et al. VITAMIN-E: visual tracking and MappINg with extremely dense feature points[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2019: 9641-9650.
- 📜 Oishi S, Inoue Y, Miura J, et al. SeqSLAM++: View-based robot localization and navigation[J]. Robotics and Autonomous Systems, 2019, 112: 13-21.
30. Pyojin Kim(韩国首尔大学自主机器人实验室)
- 研究方向:视觉里程计,定位,AR/VR
- 👦 个人主页,谷歌学术
- 📜 平面 SLAM:ECCV 2018:Linear RGB-D SLAM for planar environments
- 📜 光照变化下的鲁棒 SLAM:ICRA 2017:Robust visual localization in changing lighting conditions
- 📜 线面 SLAM:CVPR 2018:Indoor RGB-D Compass from a Single Line and Plane
- 📜 博士学位论文:Low-Drift Visual Odometry for Indoor Robotics
31. 香港科技大学空中机器人实验室
- 研究方向:空中机器人在复杂环境下的自主运行,包括状态估计、建图、运动规划、多机器人协同以及低成本传感器和计算组件的实验平台开发。
- 实验室主页:http://uav.ust.hk/
- 发表论文:http://uav.ust.hk/publications/
- 👦 沈邵劼教授谷歌学术
- 代码公开地址:https://github.com/HKUST-Aerial-Robotics
- 📜 Qin T, Li P, Shen S. Vins-mono: A robust and versatile monocular visual-inertial state estimator[J]. IEEE Transactions on Robotics, 2018, 34(4): 1004-1020.(代码:https://github.com/HKUST-Aerial-Robotics/VINS-Mono )
- 📜 Wang K, Gao F, Shen S. Real-time scalable dense surfel mapping[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 6919-6925.(代码:https://github.com/HKUST-Aerial-Robotics/DenseSurfelMapping )
32. 香港科技大学机器人与多感知实验室 RAM-LAB
- 研究方向:无人车;无人船;室内定位;机器学习。
- 实验室主页:https://www.ram-lab.com/
- 发表论文:https://www.ram-lab.com/publication/
- 👦 刘明教授谷歌学术
- 📜 Ye H, Chen Y, Liu M. Tightly coupled 3d lidar inertial odometry and mapping[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 3144-3150.(代码:https://github.com/hyye/lio-mapping )
- 📜 Zhang J, Tai L, Boedecker J, et al. Neural slam: Learning to explore with external memory[J]. arXiv preprint arXiv:1706.09520, 2017.
33. 香港中文大学天石机器人实验室
- 研究方向:工业、物流、手术机器人,三维影像,机器学习
- 实验室主页:http://ri.cuhk.edu.hk/
- 👦 刘云辉教授:http://ri.cuhk.edu.hk/yhliu
- 👦 李浩昂:个人主页,谷歌学术
- 📜 Li H, Yao J, Bazin J C, et al. A monocular SLAM system leveraging structural regularity in Manhattan world[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018: 2518-2525.
- 📜 Li H, Yao J, Lu X, et al. Combining points and lines for camera pose estimation and optimization in monocular visual odometry[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017: 1289-1296.
- 📜 消失点检测:Lu X, Yaoy J, Li H, et al. 2-Line Exhaustive Searching for Real-Time Vanishing Point Estimation in Manhattan World[C]//Applications of Computer Vision (WACV), 2017 IEEE Winter Conference on. IEEE, 2017: 345-353.(代码:https://github.com/xiaohulugo/VanishingPointDetection )
- 👦 郑帆:个人主页,谷歌学术
- 📜 Zheng F, Tang H, Liu Y H. Odometry-vision-based ground vehicle motion estimation with se (2)-constrained se (3) poses[J]. IEEE transactions on cybernetics, 2018, 49(7): 2652-2663.(代码:https://github.com/izhengfan/se2clam )
- 📜 Zheng F, Liu Y H. Visual-Odometric Localization and Mapping for Ground Vehicles Using SE (2)-XYZ Constraints[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 3556-3562.(代码:https://github.com/izhengfan/se2lam )
34. 浙江大学 CAD&CG 国家重点实验室
- 研究方向:SFM/SLAM,三维重建,增强现实
- 实验室主页:http://www.zjucvg.net/
- Github 代码地址:https://github.com/zju3dv
- 👦 章国峰教授:个人主页,谷歌学术
- 📜 ICE-BA:Liu H, Chen M, Zhang G, et al. Ice-ba: Incremental, consistent and efficient bundle adjustment for visual-inertial slam[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 1974-1982.(代码:https://github.com/zju3dv/EIBA )
- 📜 RK-SLAM:Liu H, Zhang G, Bao H. Robust keyframe-based monocular SLAM for augmented reality[C]//2016 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). IEEE, 2016: 1-10.(项目主页:http://www.zjucvg.net/rkslam/rkslam.html )
- 📜 RD-SLAM:Tan W, Liu H, Dong Z, et al. Robust monocular SLAM in dynamic environments[C]//2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). IEEE, 2013: 209-218.
35. 邹丹平(上海交通大学)
- 研究方向:视觉 SLAM,SFM,多源导航,微型无人机
- 👦 个人主页:http://drone.sjtu.edu.cn/dpzou/index.php , 谷歌学术
- 📜 Co-SLAM:Zou D, Tan P. Coslam: Collaborative visual slam in dynamic environments[J]. IEEE transactions on pattern analysis and machine intelligence, 2012, 35(2): 354-366.(代码:https://github.com/danping/CoSLAM )
- 📜 StructSLAM:Zhou H, Zou D, Pei L, et al. StructSLAM: Visual SLAM with building structure lines[J]. IEEE Transactions on Vehicular Technology, 2015, 64(4): 1364-1375.(项目主页:http://drone.sjtu.edu.cn/dpzou/project/structslam.php )
- 📜 StructVIO:Zou D, Wu Y, Pei L, et al. StructVIO: visual-inertial odometry with structural regularity of man-made environments[J]. IEEE Transactions on Robotics, 2019, 35(4): 999-1013.
36. 布树辉教授(西北工业大学智能系统实验室)
- 研究方向:语义定位与建图、SLAM、在线学习与增量学习
- 👦 个人主页:http://www.adv-ci.com/blog/ 谷歌学术
- 布老师的课件:http://www.adv-ci.com/blog/course/
- 实验室 2018 年暑期培训资料:https://github.com/zdzhaoyong/SummerCamp2018
- 📜 开源的通用 SLAM 框架:Zhao Y, Xu S, Bu S, et al. GSLAM: A general SLAM framework and benchmark[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 1110-1120.(代码:https://github.com/zdzhaoyong/GSLAM )
- 📜 Bu S, Zhao Y, Wan G, et al. Map2DFusion: Real-time incremental UAV image mosaicing based on monocular slam[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2016: 4564-4571.(代码:https://github.com/zdzhaoyong/Map2DFusion )
- 📜 Wang W, Zhao Y, Han P, et al. TerrainFusion: Real-time Digital Surface Model Reconstruction based on Monocular SLAM[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019: 7895-7902.
+1 Cyrill Stachniss(德国波恩大学摄影测量与机器人实验室)
- 研究方向:概率机器人、SLAM、自主导航、视觉激光感知、场景分析与分配、无人飞行器
- 实验室主页:https://www.ipb.uni-bonn.de/
- 👦 个人主页:https://www.ipb.uni-bonn.de/people/cyrill-stachniss/ 谷歌学术
- 发表论文:https://www.ipb.uni-bonn.de/publications/
- 开源代码:https://github.com/PRBonn
- 📜 IROS 2019 激光语义 SLAM:Chen X, Milioto A, Palazzolo E, et al. SuMa++: Efficient LiDAR-based semantic SLAM[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019: 4530-4537.(代码:https://github.com/PRBonn/semantic_suma/ )
- Cyrill Stachniss 教授 SLAM 公开课:youtube ; bilibili
- 波恩大学另外一个智能自主系统实验室:http://www.ais.uni-bonn.de/research.html
+1 上海科技大学
- Mobile Perception Lab:http://mpl.sist.shanghaitech.edu.cn/
- 👦 Laurent Kneip:个人主页;谷歌学术
- 📜 Zhou Y, Li H, Kneip L. Canny-vo: Visual odometry with rgb-d cameras based on geometric 3-d–2-d edge alignment[J]. IEEE Transactions on Robotics, 2018, 35(1): 184-199.
- 自主移动机器人实验室:https://robotics.shanghaitech.edu.cn/zh
- 👦 Sören Schwertfeger:个人主页;谷歌学术
- 📜 Shan Z, Li R, Schwertfeger S. RGBD-Inertial Trajectory Estimation and Mapping for Ground Robots[J]. Sensors, 2019, 19(10): 2251.(代码:https://github.com/STAR-Center/VINS-RGBD )
+1 美国密歇根大学机器人研究所
- 学院官网:https://robotics.umich.edu/
- 研究方向:https://robotics.umich.edu/research/focus-areas/
-
感知机器人实验室(PeRL)
- 实验室主页:http://robots.engin.umich.edu/About/
- 👦 Ryan M. Eustice 谷歌学术
- 📜 激光雷达数据集 Pandey G, McBride J R, Eustice R M. Ford campus vision and lidar data set[J]. The International Journal of Robotics Research, 2011, 30(13): 1543-1552. | 数据集
-
APRIL robotics lab
- 实验室主页:https://april.eecs.umich.edu/
- 👦 Edwin Olson 个人主页 | 谷歌学术
- 📜 Olson E. AprilTag: A robust and flexible visual fiducial system[C]//2011 IEEE International Conference on Robotics and Automation. IEEE, 2011: 3400-3407. | 代码
- 📜 Wang X, Marcotte R, Ferrer G, et al. ApriISAM: Real-time smoothing and mapping[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018: 2486-2493. | 代码
+1 瑞士苏黎世联邦理工自主系统实验室
- 研究方向:复杂多样环境中自主运行的机器人和智能系统
- 实验室主页:https://asl.ethz.ch/
- 发表论文:https://asl.ethz.ch/publications-and-sources/publications.html
- youtube | Github
- 👦 Cesar Cadena 个人主页
- 📜 Schneider T, Dymczyk M, Fehr M, et al. maplab: An open framework for research in visual-inertial mapping and localization[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 1418-1425. | 代码
- 📜 Dubé R, Cramariuc A, Dugas D, et al. SegMap: 3d segment mapping using data-driven descriptors[J]. arXiv preprint arXiv:1804.09557, 2018. | 代码
- 📜 Millane A, Taylor Z, Oleynikova H, et al. C-blox: A scalable and consistent tsdf-based dense mapping approach[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 995-1002. | 代码
+1 美国麻省理工学院 Robust Robotics Group
- 研究方向:MAV 导航与控制;人机交互的自然语言理解;自主海洋机器人的语义理解
- 实验室主页:http://groups.csail.mit.edu/rrg/index.php
- 👦 Nicholas Roy:Google Scholar
- 📜 Greene W N, Ok K, Lommel P, et al. Multi-level mapping: Real-time dense monocular SLAM[C]//2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2016: 833-840. video
- 📜 ICRA 2020 Metrically-Scaled Monocular SLAM using Learned Scale Factors." International Conference on Robotics and Automation | video
- 📜 ICRA 2019 Robust Object-based SLAM for High-speed Autonomous Navigation
+1 瑞士苏黎世联邦理工 Vision for Robotics Lab
- 研究方向:机器人视觉,无人机,自主导航,多机器人协同
- 实验室主页:https://v4rl.ethz.ch/the-group.html
- 👦 Margarita Chli:个人主页 | Google Scholar
- 📜 Schmuck P, Chli M. CCM‐SLAM: Robust and efficient centralized collaborative monocular simultaneous localization and mapping for robotic teams[J]. Journal of Field Robotics, 2019, 36(4): 763-781. code | video
- 📜 Bartolomei L, Karrer M, Chli M. Multi-robot Coordination with Agent-Server Architecture for Autonomous Navigation in Partially Unknown Environments[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2020)(virtual). 2020. code | video
- 📜 Schmuck P, Chli M. Multi-uav collaborative monocular slam[C]//2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017: 3863-3870.
+1 谢立华教授(南洋理工大学)
- 研究方向:控制,多智能体,定位
- 个人主页:https://personal.ntu.edu.sg/elhxie/research.html | Google Scholar
- 👦 Wang Han:个人主页 | Github
- 📜 Wang H, Wang C, Xie L. Intensity scan context: Coding intensity and geometry relations for loop closure detection[C]//2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020: 2095-2101. | Code
- 📜 Wang H, Wang C, Xie L. Lightweight 3-D Localization and Mapping for Solid-State LiDAR[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 1801-1807. | Code
- 📜 Wang C, Yuan J, Xie L. Non-iterative SLAM[C]//2017 18th International Conference on Advanced Robotics (ICAR). IEEE, 2017: 83-90.
3. SLAM 学习资料
这一部分的内容不太完整,陆续丰富,欢迎补充文章来源地址https://www.toymoban.com/news/detail-774085.html
3.1 国内资料
- 1) SLAMcn:http://www.slamcn.org/index.php/
- 2) SLAM 最新研究更新 Recent_SLAM_Research :https://github.com/YiChenCityU/Recent_SLAM_Research
-
3) 西北工大智能系统实验室 SLAM 培训:https://github.com/zdzhaoyong/SummerCamp2018
- 布树辉老师课件:http://www.adv-ci.com/blog/course/
- 4) IROS 2019 视觉惯导导航的挑战与应用研讨会:http://udel.edu/~ghuang/iros19-vins-workshop/index.html
- 5) 泡泡机器人 VIO 相关资料:https://github.com/PaoPaoRobot/Awesome-VIO
- 6) 崔华坤:主流 VIO 论文推导及代码解析:https://github.com/StevenCui/VIO-Doc
- 7) 李言:SLAM 中的几何与学习方法
- 8) 黄山老师状态估计视频:bilibili
- 9) 谭平老师-SLAM 6小时课程:bilibili
- 10) 2020 年 SLAM 技术及应用暑期学校:视频-bilibili | 课件
3.2 国外资料
- 1) 事件相机相关研究与发展:https://github.com/uzh-rpg/event-based_vision_resources
- 2) 加州大学圣地亚哥分校语境机器人研究所 Nikolay Atanasov 教授机器人状态估计与感知课程 ppt:https://natanaso.github.io/ece276a2019/schedule.html
- 3) 波恩大学 Mobile Sensing and Robotics Course 公开课 :youtube ,bilibili
3.3 公众号
- 泡泡机器人 SLAM:paopaorobot_slam
3.4 数据集
- 泡泡机器人 - SLAM 数据集合集
- 计算机视觉life - SLAM、重建、语义相关数据集大全
- 水下 SLAM 相关研究 - 代码、数据集
到了这里,关于(汇总篇)语义SLAM相关开源方案| 全球优秀作者与实验室 | SLAM学习资料整理的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!