人脸修复祛马赛克算法CodeFormer——C++与Python模型部署

这篇具有很好参考价值的文章主要介绍了人脸修复祛马赛克算法CodeFormer——C++与Python模型部署。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、人脸修复算法

1.算法简介

CodeFormer是一种基于AI技术深度学习的人脸复原模型,由南洋理工大学和商汤科技联合研究中心联合开发,它能够接收模糊或马赛克图像作为输入,并生成更清晰的原始图像。算法源码地址:https://github.com/sczhou/CodeFormer
这种技术在图像修复、图像增强和隐私保护等领域可能会有广泛的应用。算法是由南洋理工大学和商汤科技联合研究中心联合开发的,结合了VQGAN和Transformer。
VQGAN是一个生成模型,通常用于图像生成任务。它使用了向量量化技术,将图像编码成一系列离散的向量,然后通过解码器将这些向量转化为图像。这种方法通常能够生成高质量的图像,尤其在与Transformer等神经网络结合使用时。
Transformer是一种广泛用于自然语言处理和计算机视觉等领域的神经网络架构。它在序列数据处理中表现出色,也可以用于图像生成和处理任务。
codeformer,计算机视觉,C++,python,c++,python,CodeFormer,人脸修复,人脸祛除巴赛克,深度学习,人脸超分

在监控、安全和隐私保护领域,人脸图像通常会受到多种因素的影响,其中包括光照、像素限制、聚焦问题和人体运动等。这些因素可能导致图像模糊、变形或者包含大量的噪声。在这种情况下,尝试恢复清晰的原始人脸图像是一个极具挑战性的任务。
盲人脸复原是一个不适定问题(ill-posed problem),这意味着存在多个可能的解决方案,而且从有限的观察数据中无法唯一确定真实的原始图像。因此,在这个领域中,通常需要依赖先进的计算机视觉和图像处理技术,以及深度学习模型,来尝试改善模糊或受损图像的质量。
一些方法和技术可以用于处理盲人脸复原问题,包括但不限于:
深度学习模型: 使用卷积神经网络(CNN)和生成对抗网络(GAN)等深度学习模型,可以尝试从模糊或变形的人脸图像中恢复原始细节。
超分辨率技术: 超分辨率方法旨在从低分辨率图像中重建高分辨率图像,这也可以用于人脸图像复原。
先验知识: 利用先验知识,如人脸结构、光照模型等,可以帮助提高复原的准确性。
多模态融合: 结合不同传感器和信息源的数据,可以提高复原的鲁棒性。
然而,即使使用这些技术,由于问题的不适定性,完全恢复清晰的原始人脸图像仍然可能是一项极具挑战性的任务,特别是在极端条件下。在实际应用中,可能需要权衡图像质量和可用的信息,以达到最佳的结果。

2.算法效果

在官方公布修复的人脸效果里面,可以看到算法在各种输入的修复效果:
老照片修复
codeformer,计算机视觉,C++,python,c++,python,CodeFormer,人脸修复,人脸祛除巴赛克,深度学习,人脸超分
人脸修复
codeformer,计算机视觉,C++,python,c++,python,CodeFormer,人脸修复,人脸祛除巴赛克,深度学习,人脸超分
黑白人脸图像增强修复
codeformer,计算机视觉,C++,python,c++,python,CodeFormer,人脸修复,人脸祛除巴赛克,深度学习,人脸超分
人脸恢复
codeformer,计算机视觉,C++,python,c++,python,CodeFormer,人脸修复,人脸祛除巴赛克,深度学习,人脸超分

二、模型部署

如果想用C++进行模型推理部署,首先要把模型转换成onnx,转成onnx就可以使用onnxruntime c++库进行部署,或者使用OpenCV的DNN也可以,转成onnx后,还可以再转成ncnn模型使用ncnn进行模型部署。原模型可以从官方开源界面可以下载。
模型推理这块有两种做法,一是不用判断有没有人脸,直接对全图进行超分,但这种方法好像对本来是清晰的图像会出现bug,就是生成一些无法理解的处理。

1. C++使用onnxruntime部署模型

#include "CodeFormer.h"

CodeFormer::CodeFormer(std::string model_path)
{
	//OrtStatus* status = OrtSessionOptionsAppendExecutionProvider_CUDA(sessionOptions, 0);  ///nvidia-cuda加速
	sessionOptions.SetGraphOptimizationLevel(ORT_ENABLE_BASIC);
	std::wstring widestr = std::wstring(model_path.begin(), model_path.end());   ///如果在windows系统就这么写
	ort_session = new Ort::Session(env, widestr.c_str(), sessionOptions);   ///如果在windows系统就这么写
	///ort_session = new Session(env, model_path.c_str(), sessionOptions);  ///如果在linux系统,就这么写

	size_t numInputNodes = ort_session->GetInputCount();
	size_t numOutputNodes = ort_session->GetOutputCount();
	Ort::AllocatorWithDefaultOptions allocator;
	for (int i = 0; i < numInputNodes; i++)
	{
		input_names.push_back(ort_session->GetInputName(i, allocator));
		Ort::TypeInfo input_type_info = ort_session->GetInputTypeInfo(i);
		auto input_tensor_info = input_type_info.GetTensorTypeAndShapeInfo();
		auto input_dims = input_tensor_info.GetShape();
		input_node_dims.push_back(input_dims);
	}
	for (int i = 0; i < numOutputNodes; i++)
	{
		output_names.push_back(ort_session->GetOutputName(i, allocator));
		Ort::TypeInfo output_type_info = ort_session->GetOutputTypeInfo(i);
		auto output_tensor_info = output_type_info.GetTensorTypeAndShapeInfo();
		auto output_dims = output_tensor_info.GetShape();
		output_node_dims.push_back(output_dims);
	}

	this->inpHeight = input_node_dims[0][2];
	this->inpWidth = input_node_dims[0][3];
	this->outHeight = output_node_dims[0][2];
	this->outWidth = output_node_dims[0][3];
	input2_tensor.push_back(0.5);
}

void CodeFormer::preprocess(cv::Mat &srcimg)
{
	cv::Mat dstimg;
	cv::cvtColor(srcimg, dstimg, cv::COLOR_BGR2RGB);
	resize(dstimg, dstimg, cv::Size(this->inpWidth, this->inpHeight), cv::INTER_LINEAR);
	this->input_image_.resize(this->inpWidth * this->inpHeight * dstimg.channels());
	int k = 0;
	for (int c = 0; c < 3; c++)
	{
		for (int i = 0; i < this->inpHeight; i++)
		{
			for (int j = 0; j < this->inpWidth; j++)
			{
				float pix = dstimg.ptr<uchar>(i)[j * 3 + c];
				this->input_image_[k] = (pix / 255.0 - 0.5) / 0.5;
				k++;
			}
		}
	}
}

cv::Mat CodeFormer::detect(cv::Mat &srcimg)
{
	int im_h = srcimg.rows;
	int im_w = srcimg.cols;
	this->preprocess(srcimg);
	std::array<int64_t, 4> input_shape_{ 1, 3, this->inpHeight, this->inpWidth };
	std::vector<int64_t> input2_shape_ = { 1 };

	auto allocator_info = Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU);
	std::vector<Ort::Value> ort_inputs;
	ort_inputs.push_back(Ort::Value::CreateTensor<float>(allocator_info, input_image_.data(), input_image_.size(), input_shape_.data(), input_shape_.size()));
	ort_inputs.push_back(Ort::Value::CreateTensor<double>(allocator_info, input2_tensor.data(), input2_tensor.size(), input2_shape_.data(), input2_shape_.size()));
	std::vector<Ort::Value> ort_outputs = ort_session->Run(Ort::RunOptions{ nullptr }, input_names.data(), ort_inputs.data(), ort_inputs.size(), output_names.data(), output_names.size());

	post_process
	float* pred = ort_outputs[0].GetTensorMutableData<float>();
	//cv::Mat mask(outHeight, outWidth, CV_32FC3, pred); /经过试验,直接这样赋值,是不行的
	const unsigned int channel_step = outHeight * outWidth;
	std::vector<cv::Mat> channel_mats;
	cv::Mat rmat(outHeight, outWidth, CV_32FC1, pred); // R
	cv::Mat gmat(outHeight, outWidth, CV_32FC1, pred + channel_step); // G
	cv::Mat bmat(outHeight, outWidth, CV_32FC1, pred + 2 * channel_step); // B
	channel_mats.push_back(rmat);
	channel_mats.push_back(gmat);
	channel_mats.push_back(bmat);
	cv::Mat mask;
	merge(channel_mats, mask); // CV_32FC3 allocated

	///不用for循环遍历cv::Mat里的每个像素值,实现numpy.clip函数
	mask.setTo(this->min_max[0], mask < this->min_max[0]);
	mask.setTo(this->min_max[1], mask > this->min_max[1]);   也可以用threshold函数,阈值类型THRESH_TOZERO_INV

	mask = (mask - this->min_max[0]) / (this->min_max[1] - this->min_max[0]);
	mask *= 255.0;
	mask.convertTo(mask, CV_8UC3);
	//cvtColor(mask, mask, cv::COLOR_BGR2RGB);
	return mask;
}


void CodeFormer::detect_video(const std::string& video_path,const std::string& output_path, unsigned int writer_fps)
{
	cv::VideoCapture video_capture(video_path);

	if (!video_capture.isOpened())
	{
		std::cout << "Can not open video: " << video_path << "\n";
		return;
	}

	cv::Size S = cv::Size((int)video_capture.get(cv::CAP_PROP_FRAME_WIDTH),
		(int)video_capture.get(cv::CAP_PROP_FRAME_HEIGHT));

	cv::VideoWriter output_video(output_path, cv::VideoWriter::fourcc('m', 'p', '4', 'v'),
		30.0, S);
	
	if (!output_video.isOpened())
	{
		std::cout << "Can not open writer: " << output_path << "\n";
		return;
	}

	cv::Mat cv_mat;
	while (video_capture.read(cv_mat))
	{
		cv::Mat cv_dst = detect(cv_mat);

		output_video << cv_dst;
	}
	video_capture.release();
	output_video.release();
}

先试试官方给的样本的效果:
codeformer,计算机视觉,C++,python,c++,python,CodeFormer,人脸修复,人脸祛除巴赛克,深度学习,人脸超分
薄马赛克的超分效果:
codeformer,计算机视觉,C++,python,c++,python,CodeFormer,人脸修复,人脸祛除巴赛克,深度学习,人脸超分
codeformer,计算机视觉,C++,python,c++,python,CodeFormer,人脸修复,人脸祛除巴赛克,深度学习,人脸超分
厚马赛克的超分效果不是很好,就是有点贴脸的感觉:
codeformer,计算机视觉,C++,python,c++,python,CodeFormer,人脸修复,人脸祛除巴赛克,深度学习,人脸超分
如果是已经是清晰的图像,超分之后不是很理想,基本上是不能用的,onnx这个效果只能优化人脸:

codeformer,计算机视觉,C++,python,c++,python,CodeFormer,人脸修复,人脸祛除巴赛克,深度学习,人脸超分
codeformer,计算机视觉,C++,python,c++,python,CodeFormer,人脸修复,人脸祛除巴赛克,深度学习,人脸超分文章来源地址https://www.toymoban.com/news/detail-774213.html

2.onnx模型python推理

import os
import cv2
import argparse
import glob
import torch
import torch.onnx
from torchvision.transforms.functional import normalize
from basicsr.utils import imwrite, img2tensor, tensor2img
from basicsr.utils.download_util import load_file_from_url
from basicsr.utils.misc import gpu_is_available, get_device
from facelib.utils.face_restoration_helper import FaceRestoreHelper
from facelib.utils.misc import is_gray
import onnxruntime as ort

from basicsr.utils.registry import ARCH_REGISTRY

pretrain_model_url = {
    'restoration': 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth',
}

if __name__ == '__main__':
    # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    device = get_device()
    parser = argparse.ArgumentParser()

    parser.add_argument('-i', '--input_path', type=str, default='./inputs/whole_imgs', 
            help='Input image, video or folder. Default: inputs/whole_imgs')
    parser.add_argument('-o', '--output_path', type=str, default=None, 
            help='Output folder. Default: results/<input_name>_<w>')
    parser.add_argument('-w', '--fidelity_weight', type=float, default=0.5, 
            help='Balance the quality and fidelity. Default: 0.5')
    parser.add_argument('-s', '--upscale', type=int, default=2, 
            help='The final upsampling scale of the image. Default: 2')
    parser.add_argument('--has_aligned', action='store_true', help='Input are cropped and aligned faces. Default: False')
    parser.add_argument('--only_center_face', action='store_true', help='Only restore the center face. Default: False')
    parser.add_argument('--draw_box', action='store_true', help='Draw the bounding box for the detected faces. Default: False')
    # large det_model: 'YOLOv5l', 'retinaface_resnet50'
    # small det_model: 'YOLOv5n', 'retinaface_mobile0.25'
    parser.add_argument('--detection_model', type=str, default='retinaface_resnet50', 
            help='Face detector. Optional: retinaface_resnet50, retinaface_mobile0.25, YOLOv5l, YOLOv5n, dlib. \
                Default: retinaface_resnet50')
    parser.add_argument('--bg_upsampler', type=str, default='None', help='Background upsampler. Optional: realesrgan')
    parser.add_argument('--face_upsample', action='store_true', help='Face upsampler after enhancement. Default: False')
    parser.add_argument('--bg_tile', type=int, default=400, help='Tile size for background sampler. Default: 400')
    parser.add_argument('--suffix', type=str, default=None, help='Suffix of the restored faces. Default: None')
    parser.add_argument('--save_video_fps', type=float, default=None, help='Frame rate for saving video. Default: None')

    args = parser.parse_args()

    # ------------------------ input & output ------------------------
    w = args.fidelity_weight
    input_video = False
    if args.input_path.endswith(('jpg', 'jpeg', 'png', 'JPG', 'JPEG', 'PNG')): # input single img path
        input_img_list = [args.input_path]
        result_root = f'results/test_img_{w}'
    # elif args.input_path.endswith(('mp4', 'mov', 'avi', 'MP4', 'MOV', 'AVI')): # input video path
    #     from basicsr.utils.video_util import VideoReader, VideoWriter
    #     input_img_list = []
    #     vidreader = VideoReader(args.input_path)
    #     image = vidreader.get_frame()
    #     while image is not None:
    #         input_img_list.append(image)
    #         image = vidreader.get_frame()
    #     audio = vidreader.get_audio()
    #     fps = vidreader.get_fps() if args.save_video_fps is None else args.save_video_fps   
    #     video_name = os.path.basename(args.input_path)[:-4]
    #     result_root = f'results/{video_name}_{w}'
    #     input_video = True
    #     vidreader.close()
    # else: # input img folder
    #     if args.input_path.endswith('/'):  # solve when path ends with /
    #         args.input_path = args.input_path[:-1]
    #     # scan all the jpg and png images
    #     input_img_list = sorted(glob.glob(os.path.join(args.input_path, '*.[jpJP][pnPN]*[gG]')))
    #     result_root = f'results/{os.path.basename(args.input_path)}_{w}'
    else:
        raise ValueError("wtf???")

    if not args.output_path is None: # set output path
        result_root = args.output_path

    test_img_num = len(input_img_list)
    if test_img_num == 0:
        raise FileNotFoundError('No input image/video is found...\n' 
            '\tNote that --input_path for video should end with .mp4|.mov|.avi')

    # # ------------------ set up background upsampler ------------------
    # if args.bg_upsampler == 'realesrgan':
    #     bg_upsampler = set_realesrgan()
    # else:
    #     bg_upsampler = None

    # # ------------------ set up face upsampler ------------------
    # if args.face_upsample:
    #     if bg_upsampler is not None:
    #         face_upsampler = bg_upsampler
    #     else:
    #         face_upsampler = set_realesrgan()
    # else:
    #     face_upsampler = None

    # ------------------ set up CodeFormer restorer -------------------
    net = ARCH_REGISTRY.get('CodeFormer')(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9, 
                                            connect_list=['32', '64', '128', '256']).to(device)
    
    # ckpt_path = 'weights/CodeFormer/codeformer.pth'
    ckpt_path = load_file_from_url(url=pretrain_model_url['restoration'], 
                                    model_dir='weights/CodeFormer', progress=True, file_name=None)
    checkpoint = torch.load(ckpt_path)['params_ema']
    net.load_state_dict(checkpoint)
    net.eval()

    # # ------------------ set up FaceRestoreHelper -------------------
    # # large det_model: 'YOLOv5l', 'retinaface_resnet50'
    # # small det_model: 'YOLOv5n', 'retinaface_mobile0.25'
    # if not args.has_aligned: 
    #     print(f'Face detection model: {args.detection_model}')
    # # if bg_upsampler is not None: 
    # #     print(f'Background upsampling: True, Face upsampling: {args.face_upsample}')
    # # else:
    # #     print(f'Background upsampling: False, Face upsampling: {args.face_upsample}')
    # else:
    #     raise ValueError("wtf???")

    face_helper = FaceRestoreHelper(
        args.upscale,
        face_size=512,
        crop_ratio=(1, 1),
        # det_model = args.detection_model,
        # save_ext='png',
        # use_parse=True,
        # device=device
    )

    # -------------------- start to processing ---------------------
    for i, img_path in enumerate(input_img_list):
        # # clean all the intermediate results to process the next image
        # face_helper.clean_all()
        
        if isinstance(img_path, str):
            img_name = os.path.basename(img_path)
            basename, ext = os.path.splitext(img_name)
            print(f'[{i+1}/{test_img_num}] Processing: {img_name}')
            img = cv2.imread(img_path, cv2.IMREAD_COLOR)
        # else: # for video processing
        #     basename = str(i).zfill(6)
        #     img_name = f'{video_name}_{basename}' if input_video else basename
        #     print(f'[{i+1}/{test_img_num}] Processing: {img_name}')
        #     img = img_path

        if args.has_aligned: 
            # the input faces are already cropped and aligned
            img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
            # face_helper.is_gray = is_gray(img, threshold=10)
            # if face_helper.is_gray:
            #     print('Grayscale input: True')
            face_helper.cropped_faces = [img]
        # else:
        #     face_helper.read_image(img)
        #     # get face landmarks for each face
        #     num_det_faces = face_helper.get_face_landmarks_5(
        #         only_center_face=args.only_center_face, resize=640, eye_dist_threshold=5)
        #     print(f'\tdetect {num_det_faces} faces')
        #     # align and warp each face
        #     face_helper.align_warp_face()
        else:
            raise ValueError("wtf???")

        # face restoration for each cropped face
        for idx, cropped_face in enumerate(face_helper.cropped_faces):
            # prepare data
            cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
            normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
            cropped_face_t = cropped_face_t.unsqueeze(0).to(device)

            try:
                with torch.no_grad():
                    # output = net(cropped_face_t, w=w, adain=True)[0]
                    # output = net(cropped_face_t)[0]
                    output = net(cropped_face_t, w)[0]
                    restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
                del output
                # torch.cuda.empty_cache()
            except Exception as error:
                print(f'\tFailed inference for CodeFormer: {error}')
                restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1))
            
            # now, export the "net" codeformer to onnx
            print("Exporting CodeFormer to ONNX...")
            torch.onnx.export(net,
                # (cropped_face_t,),
                (cropped_face_t,w),
                "codeformer.onnx", 
                # verbose=True,
                export_params=True,
                opset_version=11,
                do_constant_folding=True,
                input_names = ['x','w'],
                output_names = ['y'],
            )

            # now, try to load the onnx model and run it
            print("Loading CodeFormer ONNX...")
            ort_session = ort.InferenceSession("codeformer.onnx", providers=['CPUExecutionProvider'])
            print("Running CodeFormer ONNX...")
            ort_inputs = {
                ort_session.get_inputs()[0].name: cropped_face_t.cpu().numpy(),
                ort_session.get_inputs()[1].name: torch.tensor(w).double().cpu().numpy(),
            }
            ort_outs = ort_session.run(None, ort_inputs)
            restored_face_onnx = tensor2img(torch.from_numpy(ort_outs[0]), rgb2bgr=True, min_max=(-1, 1))
            restored_face_onnx = restored_face_onnx.astype('uint8')

            restored_face = restored_face.astype('uint8')

            print("Comparing CodeFormer outputs...")
            # see how similar the outputs are: flatten and then compute all the differences
            diff = (restored_face_onnx.astype('float32') - restored_face.astype('float32')).flatten()
            # calculate min, max, mean, and std
            min_diff = diff.min()
            max_diff = diff.max()
            mean_diff = diff.mean()
            std_diff = diff.std()
            print(f"Min diff: {min_diff}, Max diff: {max_diff}, Mean diff: {mean_diff}, Std diff: {std_diff}")

            # face_helper.add_restored_face(restored_face, cropped_face)
            face_helper.add_restored_face(restored_face_onnx, cropped_face)

        # # paste_back
        # if not args.has_aligned:
        #     # upsample the background
        #     if bg_upsampler is not None:
        #         # Now only support RealESRGAN for upsampling background
        #         bg_img = bg_upsampler.enhance(img, outscale=args.upscale)[0]
        #     else:
        #         bg_img = None
        #     face_helper.get_inverse_affine(None)
        #     # paste each restored face to the input image
        #     if args.face_upsample and face_upsampler is not None: 
        #         restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=args.draw_box, face_upsampler=face_upsampler)
        #     else:
        #         restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=args.draw_box)

        # save faces
        for idx, (cropped_face, restored_face) in enumerate(zip(face_helper.cropped_faces, face_helper.restored_faces)):
            # save cropped face
            if not args.has_aligned: 
                save_crop_path = os.path.join(result_root, 'cropped_faces', f'{basename}_{idx:02d}.png')
                imwrite(cropped_face, save_crop_path)
            # save restored face
            if args.has_aligned:
                save_face_name = f'{basename}.png'
            else:
                save_face_name = f'{basename}_{idx:02d}.png'
            if args.suffix is not None:
                save_face_name = f'{save_face_name[:-4]}_{args.suffix}.png'
            save_restore_path = os.path.join(result_root, 'restored_faces', save_face_name)
            imwrite(restored_face, save_restore_path)

        # # save restored img
        # if not args.has_aligned and restored_img is not None:
        #     if args.suffix is not None:
        #         basename = f'{basename}_{args.suffix}'
        #     save_restore_path = os.path.join(result_root, 'final_results', f'{basename}.png')
        #     imwrite(restored_img, save_restore_path)

    # # save enhanced video
    # if input_video:
    #     print('Video Saving...')
    #     # load images
    #     video_frames = []
    #     img_list = sorted(glob.glob(os.path.join(result_root, 'final_results', '*.[jp][pn]g')))
    #     for img_path in img_list:
    #         img = cv2.imread(img_path)
    #         video_frames.append(img)
    #     # write images to video
    #     height, width = video_frames[0].shape[:2]
    #     if args.suffix is not None:
    #         video_name = f'{video_name}_{args.suffix}.png'
    #     save_restore_path = os.path.join(result_root, f'{video_name}.mp4')
    #     vidwriter = VideoWriter(save_restore_path, height, width, fps, audio)
         
    #     for f in video_frames:
    #         vidwriter.write_frame(f)
    #     vidwriter.close()

    print(f'\nAll results are saved in {result_root}')

到了这里,关于人脸修复祛马赛克算法CodeFormer——C++与Python模型部署的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • AI绘图实战(五):放大并修复老照片、马赛克照片、身份证件照 | Stable Diffusion成为设计师生产力工具

    S:你安装stable diffusion就是为了看小姐姐么? I :当然不是,当然是为了公司的发展谋出路~~ 预先学习 : 安装及其问题解决参考:《Windows安装Stable Diffusion WebUI及问题解决记录》; 运行使用时问题《Windows使用Stable Diffusion时遇到的各种问题整理》; 模型运用及参数《Stable D

    2024年02月01日
    浏览(60)
  • 马赛克处理

    去取马赛克的网址: Redact • Photo - Free And Private Image Redaction In The Browser https://redact.photo/ REDACT.PHOTO  (照片马赛克处理在线工具)简介 REDACT.PHOTO是一个照片马赛克处理在线工具,能够帮助我们非常方便的为照片搭上马赛克,并且完全免费,而且该在线工具采用的马赛克是随机

    2024年02月05日
    浏览(62)
  • 图像处理: 马赛克艺术

     马赛克       艺术中的一种表面装饰,由紧密排列的、通常颜色各异的小块材料(如石头、矿物、玻璃、

    2024年02月07日
    浏览(37)
  • Pooling与马赛克的秘密

      说到Pooling,相信学习过CNN的朋友们都不会感到陌生。Pooling在中文当中的意思是“池化”,在神经网络当中非常常见,通常用的比较多的一种是Max Pooling,具体操作如下图:    结合图像理解,相信你也会大概明白其中的本意。不过Pooling并不是只可以选取2x2的窗口大小,

    2024年02月05日
    浏览(43)
  • 神器 | 教你去除视频马赛克

    大家有时候看一些视频教材或者图片的时候,有些比较隐私的会做打码处理,其实去马赛克这个事,一直都是一个令大家比较头疼的问题。 相信很多小伙伴也会发现,无论是图片还是视频,都不可能完美得去除掉,至少目前可以这么说。 今天小呆分享的这款可以一定程度上

    2024年02月09日
    浏览(167)
  • FFmpeg进阶-给视频添加马赛克效果

    很多时候为了隐藏视频中的敏感信息如人脸、身份证号、车牌号等,我们会采用马赛克算法对视频帧中的一部分内容进行处理。这里介绍一下如何采用FFmpeg实现马赛克效果。 马赛克效果算法的原理如下: 1.分块处理:首先将图像划分为多个小块或区域 2.像素替换:对于每个小块,

    2024年02月21日
    浏览(49)
  • ps导出bmp|jpg马赛克

    ps导入图片-滤镜-像素化-马赛克 图像-模式-索引颜色-确定合并 文件-存储为-导出bmp格式 备注: 封面来源于免费素材网2.8 million+ Stunning Free Images to Use Anywhere - Pixabay - Pixabay ai马赛克网站PixelMe : Convert your photo into pixelart. (pixel-me.tokyo))

    2024年02月12日
    浏览(46)
  • ArcGIS三体阴影(影像三维)显示马赛克?

    我们经常基于ArcGIS通过DEM来做山体阴影 但是有时候你一放大就会出现很强的马赛克的效果 还有我们在利用ArcScene建三维场景 即使数据分辨率很高也会出现马赛克效果 那怎么来解决这个问题呢 让我们的山体阴影显示更加细腻 三维没有马赛克的效果呢? 右键图层选择如下显示

    2024年02月01日
    浏览(43)
  • AI 绘画 | Stable Diffusion 去除照片马赛克

    本篇文章教会你如何让几秒钟去除图片中的马赛克,还是依托于Stable Diffusion WEB UI的强大扩展插件ControlNet,快来学起来吧,如果有问题请在评论区留言。 首先在图生图,选择一个写实风格的大模型(我这里选择是majicMIX realistic 麦橘写实_v7.safetensors,你也可以到 https://www.libli

    2024年02月03日
    浏览(62)
  • 【Unity ShaderGraph】| 如何快速制作一个 马赛克效果 实战

    前言 本文将使用Unity 的ShaderGraph制作一个 马赛克 的效果,可以直接拿到项目中使用。 对ShaderGraph还不了解的小伙伴可以参考这篇文章:【Unity ShaderGraph】| Shader Graph入门介绍 | 简介 | 配置环境 | 窗口介绍 | 简单案例 下面就开始看一下具体的制作流程,然后自己动手制作一个吧

    2024年02月08日
    浏览(64)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包