数据仓库模式之详解 Inmon 和 Kimball

这篇具有很好参考价值的文章主要介绍了数据仓库模式之详解 Inmon 和 Kimball。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

一、前言

二、企业信息工厂(Inmon)

2.1 概念

2.2 主要组件

2.3 流程

三、多维数据仓库(Kimball)

3.1 概念

3.2 核心组件

3.3 流程

 四、异同及用途对比

4.1 异同对比

4.2 特征比较


一、前言

大部分关于数据仓库构建与讨论,都受到两位有影响力的思想领袖Bill Inmon和Ralph Kimball的影响,他们各有不同的数据仓库建模和实施方法。

  • Inmon把数据仓库定义为“面向主题的、整合的、随时间变化的、相对稳定的支持管理决策的数据集合”,用规范化的关系模型来存储和管理数据,又成为企业信息工厂
  • Kimball则把数据仓库定义为“为查询和分析定制的交易数据的副本”,他的方法通常称作多维数据仓库。

 在实际数据仓库建设中,业界往往会相互借鉴使用两种开发模式。目前主要有四种架构,Kimball的DW/BI架构、独立数据集市架构、辐射状企业信息工厂Inmon架构、混合Inmon与Kimball架构本。文将详细介绍 Kimball 和 Inmon 理论在实际数据仓库建设中的应用。

二、企业信息工厂(Inmon)

数据仓库模式之详解 Inmon 和 Kimball,数据仓库,数据治理,数据仓库,大数据

Bill Inmon的企业信息工厂(Corporate Information Factory, CIF)是两种主要的数据仓库建设模式之一。Inmon关于数据仓库的组成是这样描述的:“面向主题的、整合的、随时间变化的、包含汇总 和明细的、稳定的历史数据集合”。

2.1 概念

Inmon 模式从流程上看是自顶向下的,即从数据源到数据仓库再到数据集市的(先有数据仓库再有数据市场)一种瀑布流开发方法。对于Inmon模式,数据源往往是异构的,比如从自行定义的爬虫数据就是较为典型的一种,数据源是根据最终目标自行定制的。这里主要的数据处理工作集中在对异构数据的清洗,包括数据类型检验,数据值范围检验以及其他一些复杂规则。在这种场景下,数据无法从stage层直接输出到dm层,必须先通过ETL将数据的格式清洗后放入dw层,再从dw层选择需要的数据组合输出到dm层。

在Inmon模式中,并不强调事实表和维度表的概念,因为数据源变化的可能性较大,需要更加强调数据的清洗工作,从中抽取实体-关系。

2.2 主要组件

CIF的组成部分包括:

  • 1)应用程序。应用程序处理业务流程。应用程序产生的明细数据流转到数据仓库和操作型数据存储中,继而用作分析。
  • 2)数据暂存区。介于业务系统源数据库和目标数据仓库之间的一个数据库。暂存区是用于数据抽取、转换和加载的地方,对最终用户透明。暂存区中的大部分数据是短时留存的,通常只有相当少的一部分数据是持久性数据。
  • 3)集成和转换。在集成层,来自不同数据源的数据被转换整合为数仓和ODS里的标准企业模型。
  • 4)操作型数据存储(ODS)。操作型数据存储是业务数据的集成数据库。
  • 5)数据集市。数据集市为后续的数据分析提供数据。这里说的数据通常是数据仓库的子集,用于支持特定分析或特定种类的消费者。
  • 6)操作型数据集市(OpDM)。操作型数据集市是专注于运营决策支持的数据集市。
  • 7)数据仓库。数据仓库为企业数据提供了一个统一的整合入口,以支持管理决策、战略分析和规划。
  • 8)运营报告。运营报告从数据存储中输出。
  • 9)参考数据、主数据和外部数据。

数据仓库和操作性数据存储的区别:

  1. 操作性数据存储数据可能直接来源于应用系统,也可能来自其他数据库。
  2. 操作型数据存储中通常包括当前的或近期的(30~90天)数据,而数据仓库还包含历史(通常是很多年的)数据。
  3. 操作型数据存储的数据变化较快,而数据仓库的数据相对稳定。不是所有的组织都会建设操作型数据存储,操作型数据存储的存在满足了企业对低延迟数据的需求。
  4. 操作型数据存储可以作为数据仓库的主要来源,还可用于对数据仓库做审计。

2.3 流程

通常,Inmon都是以数据源头为导向。

  1. 首先,需要探索性地去获取尽量符合预期的数据,尝试将数据按照预期划分为不同的表需求。
  2. 其次,明确数据的清洗规则后将各个任务通过ETL由Stage层转化到DW层,这里DW层通常涉及到较多的UDF开发,将数据抽象为实体-关系模型。
  3. 接着,在完成DW的数据治理之后,可以将数据输出到数据集市中做基本的数据组合。
  4. 最后,将数据集市中的数据输出到BI系统中去辅助具体业务。
     

三、多维数据仓库(Kimball)

数据仓库模式之详解 Inmon 和 Kimball,数据仓库,数据治理,数据仓库,大数据

Kimball的多维数据仓库是数据仓库开发的另一个主要模式。Kimball将数据仓库简单地定义为“专为查询和分析而构建的事务数据的副本”(Kimball,2002)。但是,“副本”的说法并不精确。仓库数据存储在多维数据模型中。多维模型旨在方便数据使用者理解和使用数据,同时还支持更优的查询性能。它不是以实体关系模型的规范化要求组织的。

3.1 概念

Kimball 模式从流程上看是是自底向上的,即从数据集市到数据仓库再到数据源(先有数据集市再有数据仓库)的一种敏捷开发方法。对于Kimball模式,数据源往往是给定的若干个数据库表,数据较为稳定但是数据之间的关联关系比较复杂,需要从这些OLTP中产生的事务型数据结构抽取出分析型数据结构,再放入数据集市中方便下一步的BI与决策支持。

3.2 核心组件

  • 1)业务源系统。企业中的操作型/交易型应用程序。这些应用程序产生数据,数据再被集成到操作型数据存储和数据仓库中。此组件等同于企业信息工厂图中的应用程序系统。
  • 2)数据暂存区域。Kimball的暂存区域包括需要集成的流程和用于展示的转换数据,可以与企业信息工厂的集成、转换和数据仓库组件的组合进行类比。Kimball的重点是分析类数据的高效终端交付,比 Inmon的企业管理数据范围要小。Kimball的企业数据仓库可以适配数据暂存区域架构。
  • 3)数据展示区域。与企业信息工厂中的数据集市类似,关键的架构差异在于“数据仓库总线”的集成范式,如应用于若干个数据集市的共享或一致的维度。
  • 4)数据访问工具。Kimball方法侧重于最终用户的数据需求。这些需求推动采用适当的数据访问工具

3.3 流程

通常,Kimball都是以最终任务为导向。

  1. 首先,在得到数据后需要先做数据的探索,尝试将数据按照目标先拆分出不同的表需求。
  2. 其次,在明确数据依赖后将各个任务再通过ETL由Stage层转化到DM层。这里DM层数据则由若干个事实表和维度表组成。
  3. 接着,在完成DM层的事实表维度表拆分后,数据集市一方面可以直接向BI环节输出数据了,另一方面可以先DW层输出数据,方便后续的多维分析。

Kimball往往意味着快速交付、敏捷迭代,不会对数据仓库架构做过多复杂的设计,在变换莫测的互联网行业,这种架构方式逐渐成为一种主流范式。

 四、异同及用途对比

4.1 异同对比

这两种结构的相似之处:

  • 一、都是假设操作型系统和分析型系统是分离的;
  • 二、数据源(操作型系统)都是众多;
  • 三、ETL整合了多种操作型系统的信息,集中到一个企业数据仓库。

最大的不同就是企业数据仓库的模式不同:文章来源地址https://www.toymoban.com/news/detail-774216.html

  • inmon是采用第三范式的格式,kimball采用了多维模型–星型模型,并且还是最低粒度的数据存储。
  • 其次,维度数据仓库可以被分析系统直接访问(这种访问方式毕竟在分析过程中很少使用)。
  • 最后就是数据集市的概念有逻辑上的区别,在kimball的架构中,数据集市用维度数据仓库的高亮显示的表的子集来表示。

4.2 特征比较

特征 Inmon Kimball
开发周期 漫长 快速交付
开发难度
维护难度
技能要求 专家级 入门级
数据要求 企业级 特定业务

到了这里,关于数据仓库模式之详解 Inmon 和 Kimball的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据治理-数据仓库和商务智能

            数据仓库建设的主要驱动力是运营支持职能、合规需求和商务智能活动。 支持商务智能活动 赋能商业分析和高效决策 基于数据洞察寻找创新方法。 聚焦业务目标 以终为始 全局性的思考和设计,局部性的行动和建设 总结并持续优化 提升透明度和自助服务 与数据仓

    2024年02月10日
    浏览(39)
  • 数据仓库内容分享(四):滴滴大数据成本治理实践

    目录 01 滴滴大数据成本治理总体框架 1. 滴滴数据体系 2. 滴滴大数据资产管理平台 3. 滴滴大数据成本治理总体框架 02 Hadoop 成本治理实践 03 ES 成本治理实践 04 一些心得 在介绍滴滴成本治理之前,首先来简单介绍一下滴滴的数据体系。 最底层是以数据引擎为基础的数据存

    2024年02月20日
    浏览(44)
  • 阿里云-数据仓库-全链路大数据开发治理平台-DataWorks的数字世界

    上文我讲到 阿里云-数据仓库-数据分析开发神器-ODPS ,今天我带领大家一起走进神器的成长环境及它的数据世界。 DataWorks基于MaxCompute、Hologres、EMR、AnalyticDB、CDP等大数据引擎,为数据仓库、数据湖、湖仓一体等解决方案提供统一的全链路大数据开发治理平台。 它是数据工场

    2024年02月03日
    浏览(47)
  • 微服务治理:微服务断路器(微服务故障隔离模式)详解

    微服务断路器是一种设计模式,可以保护系统免于级联故障,通过限制对故障服务的调用来实现。它的工作原理类似于电气断路器:当服务遇到问题时,它会切断请求流,使其有机会恢复,并防止其他服务被压垮。 工作原理: 闭合状态(正常运行): 断路器初始处于此状态

    2024年01月17日
    浏览(48)
  • 数据治理----集中、分布的各种模式傻傻分不清楚

    1 、数据治理运营模型类型 :集中式治理;分布式治理;联邦式治理。在集中式管理模式中,数据治 理组织监督所有业务领域中的活动。在分布式管理模式中,每个业务单元中采用相同的数据治理 运营模型和标准。在联邦式管理模式中,数据治理组织与多个业务单元协同,

    2024年02月11日
    浏览(56)
  • 设计模式大作业小型仓库管理系统【带数据库+文档】

    目录 功能基本描述: 登录功能 货物入库功能 货物出库功能 修改个人信息功能 系统详细设计 单例模式 原型模式 代理模式 观察者模式 备忘录模式 课程设计总结 源代码+数据库+文档: 软件设计模式大作业小型仓库管理系统【带数据库+文档】-Java文档类资源-CSDN下载 系统所用

    2024年02月09日
    浏览(58)
  • 数据仓库命名规范详解

    养成良好的编程习惯 写出清楚、易懂、易维护的程序代码 提高代码质量与沟通效率 减少编码中的不必要的错误 (1)数据仓库命名规范 (2)表命名规范 (3)字段命名规范 (4)字段类型规范 (1)数据仓库命名规范 (2)表命名规范 命名全部采用小写字母和数字构成,只能

    2024年02月02日
    浏览(100)
  • ETL详解--数据仓库技术

      一、ETL简介 ETL ,是英文Extract-Transform-Load的缩写,用来描述将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程,是数据仓库的生命线。它是一种数据处理过程,用于从不同的数据源中提取数据、对数据进行转换和清洗,并将处理后的数据加

    2024年02月02日
    浏览(40)
  • 数据仓库架构详解

    数据仓库 ( Data Warehouse )是一个为数据分析而设计的企业级数据管理系统。数据仓库可集中、整合多个信息源的大量数据,借助数据仓库的分析能力, 为企业指定决策,帮助企业改进业务流程、提高产品数量 一般数仓分为离线数仓(spark)和实时数仓(flink) 数据采集 数据

    2024年02月16日
    浏览(24)
  • 详解数据仓库数据湖及湖仓一体

    比别人更快接收好文章 随着近几年数据湖概念的兴起,业界对于数据仓库和数据湖的对比甚至争论就一直不断。有人说数据湖是下一代大数据平台,各大云厂商也在纷纷的提出自己的数据湖解决方案,一些云数仓产品也增加了和数据湖联动的特性。 但是数据仓库和数据湖的

    2024年02月08日
    浏览(37)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包